from matplotlib.pyplot import axis import gradio as gr import requests import numpy as np from torch import nn from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation import requests url1 = 'https://cdn.pixabay.com/photo/2014/09/07/21/52/city-438393_1280.jpg' r = requests.get(url1, allow_redirects=True) open("city1.jpg", 'wb').write(r.content) url2 = 'https://cdn.pixabay.com/photo/2016/02/19/11/36/canal-1209808_1280.jpg' r = requests.get(url2, allow_redirects=True) open("city2.jpg", 'wb').write(r.content) def cityscapes_palette(): return [[128, 64, 128],[244, 35, 232],[70, 70, 70],[102, 102, 156],[190, 153, 153], [153, 153, 153],[250, 170, 30],[220, 220, 0],[107, 142, 35],[152, 251, 152], [70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32]] model_name = "nvidia/segformer-b5-finetuned-cityscapes-1024-1024" feature_extractor = SegformerFeatureExtractor.from_pretrained(model_name) model = SegformerForSemanticSegmentation.from_pretrained(model_name) def inference(image): image = image.resize((1024,1024)) inputs = feature_extractor(images=image, return_tensors="pt") outputs = model(**inputs) # First, rescale logits to original image size logits = nn.functional.interpolate(outputs.logits.detach().cpu(), size=image.size[::-1], # (height, width) mode='bilinear', align_corners=False) # Second, apply argmax on the class dimension seg = logits.argmax(dim=1)[0] color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3 palette = np.array(cityscapes_palette()) for label, color in enumerate(palette): color_seg[seg == label, :] = color # Show image + mask img = np.array(image) * 0.5 + color_seg * 0.5 img = img.astype(np.uint8) merged = np.concatenate((np.concatenate((np.array(image), color_seg), axis=1), np.concatenate((np.zeros_like(image), img), axis=1)), axis=0) return merged title = "Transformers - SegFormer B5 @ 1024px" description = "demo for SegFormer. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.\nModel: nvidia/segformer-b5-finetuned-cityscapes-1024-1024" article = "
SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers | Segformer page
" gr.Interface( inference, [gr.inputs.Image(type="pil", label="Input")], gr.outputs.Image(type="numpy", label="Output"), title=title, description=description, article=article, examples=[ ["city1.jpg"], ["city2.jpg"] ]).launch()