|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import constants |
|
import pandas as pd |
|
import streamlit as st |
|
from huggingface_hub import hf_hub_download |
|
from GlotScript import get_script_predictor |
|
import matplotlib.pyplot as plt |
|
import fasttext |
|
import altair as alt |
|
from altair import X, Y, Scale |
|
import base64 |
|
import json |
|
|
|
@st.cache_resource |
|
def load_sp(): |
|
sp = get_script_predictor() |
|
return sp |
|
|
|
|
|
sp = load_sp() |
|
|
|
def get_script(text): |
|
"""Get the writing systems of given text. |
|
|
|
Args: |
|
text: The text to be preprocessed. |
|
|
|
Returns: |
|
The main script and list of all scripts. |
|
""" |
|
res = sp(text) |
|
main_script = res[0] if res[0] else 'Zyyy' |
|
all_scripts_dict = res[2]['details'] |
|
if all_scripts_dict: |
|
all_scripts = list(all_scripts_dict.keys()) |
|
else: |
|
all_scripts = 'Zyyy' |
|
|
|
return main_script, all_scripts |
|
|
|
|
|
@st.cache_data |
|
def language_names(json_path): |
|
with open(json_path, 'r') as json_file: |
|
data = json.load(json_file) |
|
return data |
|
|
|
label2name = language_names("assets/language_names.json") |
|
|
|
def get_name(label): |
|
"""Get the name of language from label""" |
|
iso_3 = label.split('_')[0] |
|
name = label2name[iso_3] |
|
return name |
|
|
|
|
|
@st.cache_data |
|
def render_svg(svg): |
|
"""Renders the given svg string.""" |
|
b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8") |
|
html = rf'<p align="center"> <img src="data:image/svg+xml;base64,{b64}", width="40%"/> </p>' |
|
c = st.container() |
|
c.write(html, unsafe_allow_html=True) |
|
|
|
|
|
@st.cache_data |
|
def convert_df(df): |
|
|
|
return df.to_csv(index=None).encode("utf-8") |
|
|
|
|
|
@st.cache_resource |
|
def load_GlotLID_v1(model_name, file_name): |
|
model_path = hf_hub_download(repo_id=model_name, filename=file_name) |
|
model = fasttext.load_model(model_path) |
|
return model |
|
|
|
@st.cache_resource |
|
def load_GlotLID_v2(model_name, file_name): |
|
model_path = hf_hub_download(repo_id=model_name, filename=file_name) |
|
model = fasttext.load_model(model_path) |
|
return model |
|
|
|
|
|
model_1 = load_GlotLID_v1(constants.MODEL_NAME, "model_v1.bin") |
|
model_2 = load_GlotLID_v2(constants.MODEL_NAME, "model_v2.bin") |
|
|
|
@st.cache_resource |
|
def plot(label, prob): |
|
|
|
ORANGE_COLOR = "#FF8000" |
|
fig, ax = plt.subplots(figsize=(8, 1)) |
|
fig.patch.set_facecolor("none") |
|
ax.set_facecolor("none") |
|
|
|
ax.spines["left"].set_color(ORANGE_COLOR) |
|
ax.spines["bottom"].set_color(ORANGE_COLOR) |
|
ax.tick_params(axis="x", colors=ORANGE_COLOR) |
|
|
|
ax.spines[["right", "top"]].set_visible(False) |
|
|
|
ax.barh(y=[0], width=[prob], color=ORANGE_COLOR) |
|
ax.set_xlim(0, 1) |
|
ax.set_ylim(-1, 1) |
|
ax.set_title(f"Label: {label}, Language: {get_name(label)}", color=ORANGE_COLOR) |
|
ax.get_yaxis().set_visible(False) |
|
ax.set_xlabel("Confidence", color=ORANGE_COLOR) |
|
st.pyplot(fig) |
|
|
|
def compute(sentences, version = 'v2'): |
|
"""Computes the language probablities and labels for the given sentences. |
|
|
|
Args: |
|
sentences: A list of sentences. |
|
|
|
Returns: |
|
A list of language probablities and labels for the given sentences. |
|
""" |
|
progress_text = "Computing Language..." |
|
model_choice = model_2 if version == 'v2' else model_1 |
|
my_bar = st.progress(0, text=progress_text) |
|
|
|
probs = [] |
|
labels = [] |
|
|
|
for index, sent in enumerate(sentences): |
|
|
|
output = model_choice.predict(sent) |
|
|
|
output_label = output[0][0].split('__')[-1] |
|
output_prob = max(min(output[1][0], 1), 0) |
|
output_label_language = output_label.split('_')[0] |
|
|
|
|
|
if version in ['v2'] and output_label_language!= 'zxx': |
|
main_script, all_scripts = get_script(sent) |
|
output_label_script = output_label.split('_')[1] |
|
|
|
if output_label_script not in all_scripts: |
|
output_label_script = main_script |
|
output_label = f"und_{output_label_script}" |
|
output_prob = 0 |
|
|
|
|
|
labels = labels + [output_label] |
|
probs = probs + [output_prob] |
|
|
|
my_bar.progress( |
|
min((index) / len(sentences), 1), |
|
text=progress_text, |
|
) |
|
my_bar.empty() |
|
return probs, labels |
|
|
|
st.markdown("[](https://huggingface.co/spaces/cis-lmu/glotlid-space?duplicate=true)") |
|
|
|
render_svg(open("assets/glotlid_logo.svg").read()) |
|
|
|
tab1, tab2 = st.tabs(["Input a Sentence", "Upload a File"]) |
|
|
|
with tab1: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
version = st.radio( |
|
"Choose model", |
|
["v1", "v2"], |
|
captions=["GlotLID version 1", "GlotLID version 2 (more data and languages)"], |
|
index = 1, |
|
key = 'version_tab1', |
|
horizontal = True |
|
) |
|
|
|
sent = st.text_input( |
|
"Sentence:", placeholder="Enter a sentence.", on_change=None |
|
) |
|
|
|
|
|
|
|
clicked = st.button("Submit") |
|
|
|
if sent: |
|
sent = sent.replace('\n', '') |
|
|
|
probs, labels = compute([sent], version=version) |
|
prob = probs[0] |
|
label = labels[0] |
|
|
|
|
|
plot(label, prob) |
|
|
|
print(sent) |
|
with open("logs.txt", "a") as f: |
|
f.write(sent + "\n") |
|
with tab2: |
|
|
|
version = st.radio( |
|
"Choose model", |
|
["v1", "v2"], |
|
captions=["GlotLID version 1", "GlotLID version 2 (more data and languages)"], |
|
index = 1, |
|
key = 'version_tab2', |
|
horizontal = True |
|
) |
|
|
|
file = st.file_uploader("Upload a file", type=["txt"]) |
|
if file is not None: |
|
df = pd.read_csv(file, sep="¦\t¦", header=None, engine='python') |
|
df.columns = ["Sentence"] |
|
df.reset_index(drop=True, inplace=True) |
|
|
|
|
|
df['Prob'], df["Label"] = compute(df["Sentence"].tolist(), version= version) |
|
df['Language'] = df["Label"].apply(get_name) |
|
|
|
|
|
st.markdown("""---""") |
|
|
|
chart = ( |
|
alt.Chart(df.reset_index()) |
|
.mark_area(color="darkorange", opacity=0.5) |
|
.encode( |
|
x=X(field="index", title="Sentence Index"), |
|
y=Y("Prob", scale=Scale(domain=[0, 1])), |
|
) |
|
) |
|
st.altair_chart(chart.interactive(), use_container_width=True) |
|
|
|
col1, col2 = st.columns([4, 1]) |
|
|
|
with col1: |
|
|
|
st.table( |
|
df, |
|
) |
|
|
|
with col2: |
|
|
|
csv = convert_df(df) |
|
st.download_button( |
|
label=":file_folder: Download predictions as CSV", |
|
data=csv, |
|
file_name="GlotLID.csv", |
|
mime="text/csv", |
|
) |
|
|