# """ # Author: Amir Hossein Kargaran # Date: August, 2023 # Description: This code applies LIME (Local Interpretable Model-Agnostic Explanations) on fasttext language identification. # MIT License # Some part of the code is adopted from here: https://gist.github.com/ageitgey/60a8b556a9047a4ca91d6034376e5980 # """ import gradio as gr from io import BytesIO from fasttext.FastText import _FastText import re import lime.lime_text import numpy as np from PIL import Image from huggingface_hub import hf_hub_download from selenium import webdriver from selenium.common.exceptions import WebDriverException import os # Load the FastText language identification model from Hugging Face Hub model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin") # Create the FastText classifier classifier = _FastText(model_path) def remove_label_prefix(item): return item.replace('__label__', '') def remove_label_prefix_list(input_list): if isinstance(input_list[0], list): return [[remove_label_prefix(item) for item in inner_list] for inner_list in input_list] else: return [remove_label_prefix(item) for item in input_list] class_names = remove_label_prefix_list(classifier.labels) class_names = np.sort(class_names) num_class = len(class_names) def tokenize_string(string): return string.split() explainer = lime.lime_text.LimeTextExplainer( split_expression=tokenize_string, bow=False, class_names=class_names ) def fasttext_prediction_in_sklearn_format(classifier, texts): res = [] labels, probabilities = classifier.predict(texts, num_class) labels = remove_label_prefix_list(labels) for label, probs, text in zip(labels, probabilities, texts): order = np.argsort(np.array(label)) res.append(probs[order]) return np.array(res) def generate_explanation_html(input_sentence): preprocessed_sentence = input_sentence exp = explainer.explain_instance( preprocessed_sentence, classifier_fn=lambda x: fasttext_prediction_in_sklearn_format(classifier, x), top_labels=2, num_features=20, ) output_html_filename = "explanation.html" exp.save_to_file(output_html_filename) return output_html_filename def take_screenshot(local_html_path): options = webdriver.ChromeOptions() options.add_argument('--headless') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') try: local_html_path = os.path.abspath(local_html_path) wd = webdriver.Chrome(options=options) wd.set_window_size(1366, 728) wd.get('file://' + local_html_path) wd.implicitly_wait(10) screenshot = wd.get_screenshot_as_png() except WebDriverException as e: return Image.new('RGB', (1, 1)) finally: if wd: wd.quit() return Image.open(BytesIO(screenshot)) def merge(input_sentence): input_sentence = input_sentence.replace('\n', ' ') output_html_filename = generate_explanation_html(input_sentence) im = take_screenshot(output_html_filename) return im, output_html_filename input_sentence = gr.inputs.Textbox(label="Input Sentence") output_explanation = gr.outputs.File(label="Explanation HTML") iface = gr.Interface( fn=merge, inputs=input_sentence, outputs=[gr.Image(type="pil", height=364, width=683, label = "Explanation Image"), output_explanation], title="LIME LID", description="This code applies LIME (Local Interpretable Model-Agnostic Explanations) on fasttext language identification.", allow_flagging='never' ) iface.launch()