import streamlit as st from openai import OpenAI import os import sys from dotenv import load_dotenv, dotenv_values load_dotenv() # initialize the client client = OpenAI( base_url="https://api-inference.huggingface.co/v1", api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Replace with your token ) # Create supported models model_links = { "Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1", "Mistral-Nemo-Instruct-2407": "mistralai/Mistral-Nemo-Instruct-2407", "Nous-Hermes-2-Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1", "Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2", "Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3", "Mistral-Small-Instruct-2409": "mistralai/Mistral-Small-Instruct-2409", } def reset_conversation(): #st.session_state.conversation = [] st.session_state.messages = [] return None def ask_assistant_stream(st_model, st_messages, st_temp_value, st_max_tokens): response={} try: stream = client.chat.completions.create( model=st_model, messages=[ {"role": m["role"], "content": m["content"]} for m in st_messages ], temperature=st_temp_value, stream=True, max_tokens=st_max_tokens, ) response["stream"] = stream except Exception as e: pass return response # Define the available models & Create the sidebar with the dropdown for model selection models =[key for key in model_links.keys()] selected_model = st.sidebar.selectbox("Select Model", models) # Create a temperature slider temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5)) # Create a max_token slider max_token_value = st.sidebar.slider('Select a max_token value', 1000, 9000, (5000)) #Add reset button to clear conversation st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button # Create model description st.sidebar.write(f"You're now chatting with **{selected_model}**") st.sidebar.markdown("*Generated content may be inaccurate or false.*") def remove_message(position): st.toast("try to remove message no: " + str(position-1) + " and "+ str(position)) del st.session_state.messages[position-2:position] st.subheader(f'{selected_model}') # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun pos = 0 for message in st.session_state.messages: pos=pos+1 with st.chat_message(message["role"]): col1, col2 = st.columns([9,1]) col1.markdown(message["content"]) if message["role"] == "assistant": col2.button("remove-"+str(pos), key="button_remove_message_"+str(pos), args=[pos], on_click=remove_message) # Accept user input if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"): # Display user message in chat message container and Add user message to chat history pos = len(st.session_state.messages)+1 with st.chat_message("user"): col1, col2 = st.columns([9,1]) col1.markdown(prompt) # col2.button("remove-"+str(pos), key="button_remove_message_"+str(pos), args=[pos], on_click=remove_message) st.session_state.messages.append({"role": "user", "content": prompt}) # Display assistant response in chat message container assistant = ask_assistant_stream(model_links[selected_model], st.session_state.messages, temp_values, max_token_value) pos = len(st.session_state.messages)+1 if "stream" in assistant: with st.chat_message("assistant"): col1, col2 = st.columns([9,1]) response = col1.write_stream(assistant["stream"]) col2.button("remove-"+str(pos), key="button_remove_message_"+str(pos), args=[pos], on_click=remove_message) else: with st.chat_message("assistant"): col1, col2 = st.columns([9,1]) response = col1.write("Failure!") col2.button("remove-"+str(pos), key="button_remove_message_"+str(pos), args=[pos], on_click=remove_message) st.session_state.messages.append({"role": "assistant", "content": response})