import streamlit as st from openai import OpenAI import os import sys from langchain.callbacks import StreamlitCallbackHandler from dotenv import load_dotenv, dotenv_values load_dotenv() if 'key' not in st.session_state: st.session_state['key'] = 'value' # initialize the client but point it to TGI client = OpenAI( base_url="https://api-inference.huggingface.co/v1", api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')#"hf_xxx" # Replace with your token ) #Create supported models model_links ={ "Mistral":"mistralai/Mistral-7B-Instruct-v0.2", "Gemma":"google/gemma-7b-it", # "Llama-2":"meta-llama/Llama-2-7b-chat-hf" } #Pull info about the model to display model_info ={ "Mistral": {'description':"""The Mistral model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ \nIt was created by the [**Mistral AI**](https://mistral.ai/news/announcing-mistral-7b/) team as has over **7 billion parameters.** \n""", 'logo':'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'}, "Gemma": {'description':"""The Gemma model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \ \nIt was created by the [**Google's AI Team**](https://blog.google/technology/developers/gemma-open-models/) team as has over **7 billion parameters.** \n""", 'logo':'https://pbs.twimg.com/media/GG3sJg7X0AEaNIq.jpg'}, } # Define the available models # models = ["Mistral", "Gemma"] models =[key for key in model_links.keys()] # Create the sidebar with the dropdown for model selection selected_model = st.sidebar.selectbox("Select Model", models) # Create model description st.sidebar.write(f"You're now chatting with **{selected_model}**") st.sidebar.markdown(model_info[selected_model]['description']) st.sidebar.image(model_info[selected_model]['logo']) #Pull in the model we want to use repo_id = model_links[selected_model] st.title(f'ChatBot Using {selected_model}') # Set a default model if selected_model not in st.session_state: st.session_state[selected_model] = model_links[selected_model] # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Accept user input if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"): # Display user message in chat message container with st.chat_message("user"): st.markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) # Display assistant response in chat message container with st.chat_message("assistant"): st_callback = StreamlitCallbackHandler(st.container()) stream = client.chat.completions.create( model=model_links[selected_model], messages=[ {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ], temperature=0.5, stream=True, max_tokens=3000, ) response = st.write_stream(stream) st.session_state.messages.append({"role": "assistant", "content": response})