import streamlit as st from openai import OpenAI import os import sys from dotenv import load_dotenv, dotenv_values load_dotenv() # initialize the client client = OpenAI( base_url="https://api-inference.huggingface.co/v1", api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN') # Replace with your token ) # Create supported models model_links = { "Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1", "Mistral-Nemo-Instruct-2407": "mistralai/Mistral-Nemo-Instruct-2407", "Nous-Hermes-2-Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1", "Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2", "Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3", "Mistral-Small-Instruct-2409": "mistralai/Mistral-Small-Instruct-2409", } #Random dog images for error message random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg", "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg", "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg", "1326984c-39b0-492c-a773-f120d747a7e2.jpg", "42a98d03-5ed7-4b3b-af89-7c4876cb14c3.jpg", "8b3317ed-2083-42ac-a575-7ae45f9fdc0d.jpg", "ee17f54a-83ac-44a3-8a35-e89ff7153fb4.jpg", "027eef85-ccc1-4a66-8967-5d74f34c8bb4.jpg", "08f5398d-7f89-47da-a5cd-1ed74967dc1f.jpg", "0fd781ff-ec46-4bdc-a4e8-24f18bf07def.jpg", "0fb4aeee-f949-4c7b-a6d8-05bf0736bdd1.jpg", "6edac66e-c0de-4e69-a9d6-b2e6f6f9001b.jpg", "bfb9e165-c643-4993-9b3a-7e73571672a6.jpg"] def reset_conversation(): ''' Resets Conversation ''' st.session_state.conversation = [] st.session_state.messages = [] return None def get_assistant_aswer(st_model, st_messages, st_temp_value, st_max_tokens): response = "" #try: stream = client.chat.completions.create( model=st_model, messages=[ {"role": m["role"], "content": m["content"]} for m in st_messages ], temperature=st_temp_value, stream=True, max_tokens=st_max_tokens, ) for chunk in stream: response = response + chunk.choices[0].delta.content # except Exception as e: # response = "😵‍💫 Looks like someone unplugged something!" return response # Define the available models models =[key for key in model_links.keys()] # Create the sidebar with the dropdown for model selection selected_model = st.sidebar.selectbox("Select Model", models) # Create a temperature slider temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5)) # Create a max_token slider max_token_value = st.sidebar.slider('Select a max_token value', 1000, 9000, (5000)) #Add reset button to clear conversation st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button # Create model description st.sidebar.write(f"You're now chatting with **{selected_model}**") st.sidebar.markdown("*Generated content may be inaccurate or false.*") # st.sidebar.markdown("\n[TypeGPT](https://typegpt.net).") if "prev_option" not in st.session_state: st.session_state.prev_option = selected_model if st.session_state.prev_option != selected_model: st.session_state.messages = [] # st.write(f"Changed to {selected_model}") st.session_state.prev_option = selected_model reset_conversation() #Pull in the model we want to use repo_id = model_links[selected_model] st.subheader(f'{selected_model}') # # st.title(f'ChatBot Using {selected_model}') # Set a default model if selected_model not in st.session_state: st.session_state[selected_model] = model_links[selected_model] # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) if "retry" not in st.session_state: st.session_state.retry= False def retry_click(): st.session_state.retry= True if st.session_state.retry: lastmessage = st.session_state.messages.pop() st.toast("popped msg: " + lastmessage["content"] + " // model: " + model_links[selected_model]) response = get_assistant_aswer(model_links[selected_model], st.session_state.messages, temp_values, max_token_value) st.session_state.messages.append({"role": "assistant", "content": response}) st.session_state.retry= False st.rerun() if "remove" not in st.session_state: st.session_state.remove= False def remove_click(): st.session_state.remove= True if st.session_state.remove: lastmessage = st.session_state.messages.pop() prelastmessage = st.session_state.messages.pop() st.toast("popped msg: " + lastmessage["content"] + " // model: " + model_links[selected_model]) st.session_state.remove= False st.rerun() # Accept user input if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"): # Display user message in chat message container with st.chat_message("user"): st.markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "user", "content": prompt}) # Display assistant response in chat message container response = get_assistant_aswer(model_links[selected_model], st.session_state.messages, temp_values, max_token_value) with st.chat_message("assistant"): st.write(response) st.session_state.messages.append({"role": "assistant", "content": response}) if len(st.session_state.messages)>0: col1, col2 = st.columns(2) col1.button("retry", key="retryButton", on_click=retry_click) col2.button("remove", key="removeButton", on_click=remove_click)