import chainlit as cl import langchain # from langchain.indexes import VectorstoreIndexCreator from langchain.document_loaders import TextLoader, CSVLoader, JSONLoader from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma import os from langchain.embeddings import OpenAIEmbeddings from langchain.prompts import PromptTemplate # from langchain.chains import RetrievalQA # from langchain.llms import OpenAI from langchain.chat_models import ChatOpenAI import openai from getpass import getpass from langchain.embeddings import OpenAIEmbeddings from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.prompts import ChatPromptTemplate from operator import itemgetter from langchain.chat_models import ChatOpenAI from langchain.schema.output_parser import StrOutputParser from langchain.schema.runnable import RunnableLambda, RunnablePassthrough # At the beginning of your script, add logging to get more detailed error messages import logging logging.basicConfig(level=logging.DEBUG) # ... rest of your code # Set the OpenAI key os.environ["OPENAI_API_KEY"] = "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" openai.api_key = os.environ["OPENAI_API_KEY"] # 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 from langchain.prompts import ChatPromptTemplate template = """ Please act as a professional and polite HR assistant for "Osio Labs" company. You are responsible to answer the questions from documents provided. You are to reply in this format: "Provide a detailed explanation of the answer based on the context provided without omitting any important information including the github LINK provided in the data. If you don't know the question being asked, please say I don't understand your question, can you rephrase it please? Context: {context} Question: {question} """ # load documents loader = CSVLoader("data/OsioLabs_Data.csv", encoding="cp1252") documents = loader.load() # Vector DB text_splitter = RecursiveCharacterTextSplitter(chunk_size=250) docs = text_splitter.split_documents(documents) vectorstore = Chroma.from_documents(docs, OpenAIEmbeddings()) prompt = ChatPromptTemplate.from_template(template) retriever = vectorstore.as_retriever(search_kwargs={"k":2}) # Initialize OpenAI Chat Model primary_qa_llm = ChatOpenAI(model_name="gpt-4", temperature=0.5) retrieval_augmented_qa_chain = ( # INVOKE CHAIN WITH: {"question" : "<>"} # "question" : populated by getting the value of the "question" key # "context" : populated by getting the value of the "question" key and chaining it into the base_retriever {"context": itemgetter("question") | retriever, "question": itemgetter("question")} # "context" : is assigned to a RunnablePassthrough object (will not be called or considered in the next step) # by getting the value of the "context" key from the previous step | RunnablePassthrough.assign(context=itemgetter("context")) # "response" : the "context" and "question" values are used to format our prompt object and then piped # into the LLM and stored in a key called "response" # "context" : populated by getting the value of the "context" key from the previous step | {"response": prompt | primary_qa_llm, "context": itemgetter("context")} ) # Set up the Chainlit UI @cl.on_chat_start def start_chat(): settings = { "model": "gpt-4", "temperature": 0, # ... other settings } cl.user_session.set("settings", settings) @cl.on_message async def main(message: str): # Here, adapt the logic to use your retrieval_augmented_qa_chain and ChatOpenAI model try: # Extract the content from the message object user_query = message.content if hasattr(message, 'content') else str(message) print(f"Received message: {user_query}") # Adapt this part to use your retrieval_augmented_qa_chain # For example: chain_input = {"question": user_query} chain_output = retrieval_augmented_qa_chain.invoke(chain_input) # Remove await if chain_output and "response" in chain_output: response_content = chain_output["response"].content else: response_content = "No response generated." except Exception as e: response_content = f"Error occurred: {str(e)}" print(f"Error: {str(e)}") # Debugging # Send a response back to the user await cl.Message(content = response_content).send() # cl.title("HR Assistant Chatbot") # user_question = cl.text_input("Enter your question:") # if user_question: # response = main(user_question) # cl.text_area("Response:", response, height=300) # @cl.on_message # async def main(message: str): # # Here, adapt the logic to use your retrieval_augmented_qa_chain and ChatOpenAI model # try: # # Extract the content from the message object # user_query = message.text if hasattr(message, 'text') else str(message) # print(f"Received message: {user_query}") # # Adapt this part to use your retrieval_augmented_qa_chain # # For example: # chain_input = {"question": user_query} # chain_output = retrieval_augmented_qa_chain.invoke(chain_input) # Remove await # if chain_output and "response" in chain_output: # response_content = chain_output["response"] # else: # response_content = "No response generated." # except Exception as e: # response_content = f"Error occurred: {str(e)}" # print(f"Error: {str(e)}") # Debugging # # Send a response back to the user # await cl.Message(content=response_content).send()