Spaces:
Running
on
Zero
Running
on
Zero
# -*- coding: utf-8 -*- | |
# transformations.py | |
# Copyright (c) 2006, Christoph Gohlke | |
# Copyright (c) 2006-2009, The Regents of the University of California | |
# All rights reserved. | |
# | |
# Redistribution and use in source and binary forms, with or without | |
# modification, are permitted provided that the following conditions are met: | |
# | |
# * Redistributions of source code must retain the above copyright | |
# notice, this list of conditions and the following disclaimer. | |
# * Redistributions in binary form must reproduce the above copyright | |
# notice, this list of conditions and the following disclaimer in the | |
# documentation and/or other materials provided with the distribution. | |
# * Neither the name of the copyright holders nor the names of any | |
# contributors may be used to endorse or promote products derived | |
# from this software without specific prior written permission. | |
# | |
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE | |
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | |
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | |
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS | |
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN | |
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | |
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE | |
# POSSIBILITY OF SUCH DAMAGE. | |
"""Homogeneous Transformation Matrices and Quaternions. | |
A library for calculating 4x4 matrices for translating, rotating, reflecting, | |
scaling, shearing, projecting, orthogonalizing, and superimposing arrays of | |
3D homogeneous coordinates as well as for converting between rotation matrices, | |
Euler angles, and quaternions. Also includes an Arcball control object and | |
functions to decompose transformation matrices. | |
:Authors: | |
`Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`__, | |
Laboratory for Fluorescence Dynamics, University of California, Irvine | |
:Version: 20090418 | |
Requirements | |
------------ | |
* `Python 2.6 <http://www.python.org>`__ | |
* `Numpy 1.3 <http://numpy.scipy.org>`__ | |
* `transformations.c 20090418 <http://www.lfd.uci.edu/~gohlke/>`__ | |
(optional implementation of some functions in C) | |
Notes | |
----- | |
Matrices (M) can be inverted using numpy.linalg.inv(M), concatenated using | |
numpy.dot(M0, M1), or used to transform homogeneous coordinates (v) using | |
numpy.dot(M, v) for shape (4, \*) "point of arrays", respectively | |
numpy.dot(v, M.T) for shape (\*, 4) "array of points". | |
Calculations are carried out with numpy.float64 precision. | |
This Python implementation is not optimized for speed. | |
Vector, point, quaternion, and matrix function arguments are expected to be | |
"array like", i.e. tuple, list, or numpy arrays. | |
Return types are numpy arrays unless specified otherwise. | |
Angles are in radians unless specified otherwise. | |
Quaternions ix+jy+kz+w are represented as [x, y, z, w]. | |
Use the transpose of transformation matrices for OpenGL glMultMatrixd(). | |
A triple of Euler angles can be applied/interpreted in 24 ways, which can | |
be specified using a 4 character string or encoded 4-tuple: | |
*Axes 4-string*: e.g. 'sxyz' or 'ryxy' | |
- first character : rotations are applied to 's'tatic or 'r'otating frame | |
- remaining characters : successive rotation axis 'x', 'y', or 'z' | |
*Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1) | |
- inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix. | |
- parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed | |
by 'z', or 'z' is followed by 'x'. Otherwise odd (1). | |
- repetition : first and last axis are same (1) or different (0). | |
- frame : rotations are applied to static (0) or rotating (1) frame. | |
References | |
---------- | |
(1) Matrices and transformations. Ronald Goldman. | |
In "Graphics Gems I", pp 472-475. Morgan Kaufmann, 1990. | |
(2) More matrices and transformations: shear and pseudo-perspective. | |
Ronald Goldman. In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991. | |
(3) Decomposing a matrix into simple transformations. Spencer Thomas. | |
In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991. | |
(4) Recovering the data from the transformation matrix. Ronald Goldman. | |
In "Graphics Gems II", pp 324-331. Morgan Kaufmann, 1991. | |
(5) Euler angle conversion. Ken Shoemake. | |
In "Graphics Gems IV", pp 222-229. Morgan Kaufmann, 1994. | |
(6) Arcball rotation control. Ken Shoemake. | |
In "Graphics Gems IV", pp 175-192. Morgan Kaufmann, 1994. | |
(7) Representing attitude: Euler angles, unit quaternions, and rotation | |
vectors. James Diebel. 2006. | |
(8) A discussion of the solution for the best rotation to relate two sets | |
of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828. | |
(9) Closed-form solution of absolute orientation using unit quaternions. | |
BKP Horn. J Opt Soc Am A. 1987. 4(4), 629-642. | |
(10) Quaternions. Ken Shoemake. | |
http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf | |
(11) From quaternion to matrix and back. JMP van Waveren. 2005. | |
http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm | |
(12) Uniform random rotations. Ken Shoemake. | |
In "Graphics Gems III", pp 124-132. Morgan Kaufmann, 1992. | |
Examples | |
-------- | |
alpha, beta, gamma = 0.123, -1.234, 2.345 | |
origin, xaxis, yaxis, zaxis = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1) | |
I = identity_matrix() | |
Rx = rotation_matrix(alpha, xaxis) | |
Ry = rotation_matrix(beta, yaxis) | |
Rz = rotation_matrix(gamma, zaxis) | |
R = concatenate_matrices(Rx, Ry, Rz) | |
euler = euler_from_matrix(R, 'rxyz') | |
numpy.allclose([alpha, beta, gamma], euler) | |
True | |
Re = euler_matrix(alpha, beta, gamma, 'rxyz') | |
is_same_transform(R, Re) | |
True | |
al, be, ga = euler_from_matrix(Re, 'rxyz') | |
is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz')) | |
True | |
qx = quaternion_about_axis(alpha, xaxis) | |
qy = quaternion_about_axis(beta, yaxis) | |
qz = quaternion_about_axis(gamma, zaxis) | |
q = quaternion_multiply(qx, qy) | |
q = quaternion_multiply(q, qz) | |
Rq = quaternion_matrix(q) | |
is_same_transform(R, Rq) | |
True | |
S = scale_matrix(1.23, origin) | |
T = translation_matrix((1, 2, 3)) | |
Z = shear_matrix(beta, xaxis, origin, zaxis) | |
R = random_rotation_matrix(numpy.random.rand(3)) | |
M = concatenate_matrices(T, R, Z, S) | |
scale, shear, angles, trans, persp = decompose_matrix(M) | |
numpy.allclose(scale, 1.23) | |
True | |
numpy.allclose(trans, (1, 2, 3)) | |
True | |
numpy.allclose(shear, (0, math.tan(beta), 0)) | |
True | |
is_same_transform(R, euler_matrix(axes='sxyz', *angles)) | |
True | |
M1 = compose_matrix(scale, shear, angles, trans, persp) | |
is_same_transform(M, M1) | |
True | |
""" | |
from __future__ import division | |
import warnings | |
import math | |
import numpy | |
# Documentation in HTML format can be generated with Epydoc | |
__docformat__ = "restructuredtext en" | |
def skew(v): | |
"""Returns the skew-symmetric matrix of a vector | |
cfo, 2015/08/13 | |
""" | |
return numpy.array([[0, -v[2], v[1]], | |
[v[2], 0, -v[0]], | |
[-v[1], v[0], 0]], dtype=numpy.float64) | |
def unskew(R): | |
"""Returns the coordinates of a skew-symmetric matrix | |
cfo, 2015/08/13 | |
""" | |
return numpy.array([R[2, 1], R[0, 2], R[1, 0]], dtype=numpy.float64) | |
def first_order_rotation(rotvec): | |
"""First order approximation of a rotation: I + skew(rotvec) | |
cfo, 2015/08/13 | |
""" | |
R = numpy.zeros((3, 3), dtype=numpy.float64) | |
R[0, 0] = 1.0 | |
R[1, 0] = rotvec[2] | |
R[2, 0] = -rotvec[1] | |
R[0, 1] = -rotvec[2] | |
R[1, 1] = 1.0 | |
R[2, 1] = rotvec[0] | |
R[0, 2] = rotvec[1] | |
R[1, 2] = -rotvec[0] | |
R[2, 2] = 1.0 | |
return R | |
def axis_angle(axis, theta): | |
"""Compute a rotation matrix from an axis and an angle. | |
Returns 3x3 Matrix. | |
Is the same as transformations.rotation_matrix(theta, axis). | |
cfo, 2015/08/13 | |
""" | |
if theta*theta > _EPS: | |
wx = axis[0] | |
wy = axis[1] | |
wz = axis[2] | |
costheta = numpy.cos(theta) | |
sintheta = numpy.sin(theta) | |
c_1 = 1.0 - costheta | |
wx_sintheta = wx * sintheta | |
wy_sintheta = wy * sintheta | |
wz_sintheta = wz * sintheta | |
C00 = c_1 * wx * wx | |
C01 = c_1 * wx * wy | |
C02 = c_1 * wx * wz | |
C11 = c_1 * wy * wy | |
C12 = c_1 * wy * wz | |
C22 = c_1 * wz * wz | |
R = numpy.zeros((3, 3), dtype=numpy.float64) | |
R[0, 0] = costheta + C00 | |
R[1, 0] = wz_sintheta + C01 | |
R[2, 0] = -wy_sintheta + C02 | |
R[0, 1] = -wz_sintheta + C01 | |
R[1, 1] = costheta + C11 | |
R[2, 1] = wx_sintheta + C12 | |
R[0, 2] = wy_sintheta + C02 | |
R[1, 2] = -wx_sintheta + C12 | |
R[2, 2] = costheta + C22 | |
return R | |
else: | |
return first_order_rotation(axis*theta) | |
def expmap_so3(rotvec): | |
"""Exponential map at identity. | |
Create a rotation from canonical coordinates using Rodrigues' formula. | |
cfo, 2015/08/13 | |
""" | |
theta = numpy.linalg.norm(rotvec) | |
axis = rotvec/theta | |
return axis_angle(axis, theta) | |
def logmap_so3(R): | |
"""Logmap at the identity. | |
Returns canonical coordinates of rotation. | |
cfo, 2015/08/13 | |
""" | |
R11 = R[0, 0] | |
R12 = R[0, 1] | |
R13 = R[0, 2] | |
R21 = R[1, 0] | |
R22 = R[1, 1] | |
R23 = R[1, 2] | |
R31 = R[2, 0] | |
R32 = R[2, 1] | |
R33 = R[2, 2] | |
tr = numpy.trace(R) | |
omega = numpy.empty((3,), dtype=numpy.float64) | |
# when trace == -1, i.e., when theta = +-pi, +-3pi, +-5pi, we do something | |
# special | |
if(numpy.abs(tr + 1.0) < 1e-10): | |
if(numpy.abs(R33 + 1.0) > 1e-10): | |
omega = (numpy.pi / numpy.sqrt(2.0 + 2.0 * R33)) * \ | |
numpy.array([R13, R23, 1.0+R33]) | |
elif(numpy.abs(R22 + 1.0) > 1e-10): | |
omega = (numpy.pi / numpy.sqrt(2.0 + 2.0 * R22)) * \ | |
numpy.array([R12, 1.0+R22, R32]) | |
else: | |
omega = (numpy.pi / numpy.sqrt(2.0 + 2.0 * R11)) * \ | |
numpy.array([1.0+R11, R21, R31]) | |
else: | |
magnitude = 1.0 | |
tr_3 = tr - 3.0 | |
if tr_3 < -1e-7: | |
theta = numpy.arccos((tr - 1.0) / 2.0) | |
magnitude = theta / (2.0 * numpy.sin(theta)) | |
else: | |
# when theta near 0, +-2pi, +-4pi, etc. (trace near 3.0) | |
# use Taylor expansion: theta \approx 1/2-(t-3)/12 + O((t-3)^2) | |
magnitude = 0.5 - tr_3 * tr_3 / 12.0 | |
omega = magnitude * numpy.array([R32 - R23, R13 - R31, R21 - R12]) | |
return omega | |
def right_jacobian_so3(rotvec): | |
"""Right Jacobian for Exponential map in SO(3) | |
Equation (10.86) and following equations in G.S. Chirikjian, "Stochastic | |
Models, Information Theory, and Lie Groups", Volume 2, 2008. | |
> expmap_so3(thetahat + omega) \approx expmap_so3(thetahat) * expmap_so3(Jr * omega) | |
where Jr = right_jacobian_so3(thetahat); | |
This maps a perturbation in the tangent space (omega) to a perturbation | |
on the manifold (expmap_so3(Jr * omega)) | |
cfo, 2015/08/13 | |
""" | |
theta2 = numpy.dot(rotvec, rotvec) | |
if theta2 <= _EPS: | |
return numpy.identity(3, dtype=numpy.float64) | |
else: | |
theta = numpy.sqrt(theta2) | |
Y = skew(rotvec) / theta | |
I_3x3 = numpy.identity(3, dtype=numpy.float64) | |
J_r = I_3x3 - ((1.0 - numpy.cos(theta)) / theta) * Y + \ | |
(1.0 - numpy.sin(theta) / theta) * numpy.dot(Y, Y) | |
return J_r | |
def S_inv_eulerZYX_body(euler_coordinates): | |
""" Relates angular rates w to changes in eulerZYX coordinates. | |
dot(euler) = S^-1(euler_coordinates) * omega | |
Also called: rotation-rate matrix. (E in Lupton paper) | |
cfo, 2015/08/13 | |
""" | |
y = euler_coordinates[1] | |
z = euler_coordinates[2] | |
E = numpy.zeros((3, 3)) | |
E[0, 1] = numpy.sin(z)/numpy.cos(y) | |
E[0, 2] = numpy.cos(z)/numpy.cos(y) | |
E[1, 1] = numpy.cos(z) | |
E[1, 2] = -numpy.sin(z) | |
E[2, 0] = 1.0 | |
E[2, 1] = numpy.sin(z)*numpy.sin(y)/numpy.cos(y) | |
E[2, 2] = numpy.cos(z)*numpy.sin(y)/numpy.cos(y) | |
return E | |
def S_inv_eulerZYX_body_deriv(euler_coordinates, omega): | |
""" Compute dE(euler_coordinates)*omega/deuler_coordinates | |
cfo, 2015/08/13 | |
""" | |
y = euler_coordinates[1] | |
z = euler_coordinates[2] | |
""" | |
w1 = omega[0]; w2 = omega[1]; w3 = omega[2] | |
J = numpy.zeros((3,3)) | |
J[0,0] = 0 | |
J[0,1] = math.tan(y) / math.cos(y) * (math.sin(z) * w2 + math.cos(z) * w3) | |
J[0,2] = w2/math.cos(y)*math.cos(z) - w3/math.cos(y)*math.sin(z) | |
J[1,0] = 0 | |
J[1,1] = 0 | |
J[1,2] = -w2*math.sin(z) - w3*math.cos(z) | |
J[2,0] = w1 | |
J[2,1] = 1.0/math.cos(y)**2 * (w2 * math.sin(z) + w3 * math.cos(z)) | |
J[2,2] = w2*math.tan(y)*math.cos(z) - w3*math.tan(y)*math.sin(z) | |
""" | |
# second version, x = psi, y = theta, z = phi | |
# J_x = numpy.zeros((3,3)) | |
J_y = numpy.zeros((3, 3)) | |
J_z = numpy.zeros((3, 3)) | |
# dE^-1/dtheta | |
J_y[0, 1] = math.tan(y)/math.cos(y)*math.sin(z) | |
J_y[0, 2] = math.tan(y)/math.cos(y)*math.cos(z) | |
J_y[2, 1] = math.sin(z)/(math.cos(y))**2 | |
J_y[2, 2] = math.cos(z)/(math.cos(y))**2 | |
# dE^-1/dphi | |
J_z[0, 1] = math.cos(z)/math.cos(y) | |
J_z[0, 2] = -math.sin(z)/math.cos(y) | |
J_z[1, 1] = -math.sin(z) | |
J_z[1, 2] = -math.cos(z) | |
J_z[2, 1] = math.cos(z)*math.tan(y) | |
J_z[2, 2] = -math.sin(z)*math.tan(y) | |
J = numpy.zeros((3, 3)) | |
J[:, 1] = numpy.dot(J_y, omega) | |
J[:, 2] = numpy.dot(J_z, omega) | |
return J | |
def identity_matrix(): | |
"""Return 4x4 identity/unit matrix. | |
>>> I = identity_matrix() | |
>>> numpy.allclose(I, numpy.dot(I, I)) | |
True | |
>>> numpy.sum(I), numpy.trace(I) | |
(4.0, 4.0) | |
>>> numpy.allclose(I, numpy.identity(4, dtype=numpy.float64)) | |
True | |
""" | |
return numpy.identity(4, dtype=numpy.float64) | |
def translation_matrix(direction): | |
"""Return matrix to translate by direction vector. | |
>>> v = numpy.random.random(3) - 0.5 | |
>>> numpy.allclose(v, translation_matrix(v)[:3, 3]) | |
True | |
""" | |
M = numpy.identity(4) | |
M[:3, 3] = direction[:3] | |
return M | |
def translation_from_matrix(matrix): | |
"""Return translation vector from translation matrix. | |
>>> v0 = numpy.random.random(3) - 0.5 | |
>>> v1 = translation_from_matrix(translation_matrix(v0)) | |
>>> numpy.allclose(v0, v1) | |
True | |
""" | |
return numpy.array(matrix, copy=False)[:3, 3].copy() | |
def convert_3x3_to_4x4(matrix_3x3): | |
M = numpy.identity(4) | |
M[:3, :3] = matrix_3x3 | |
return M | |
def reflection_matrix(point, normal): | |
"""Return matrix to mirror at plane defined by point and normal vector. | |
>>> v0 = numpy.random.random(4) - 0.5 | |
>>> v0[3] = 1.0 | |
>>> v1 = numpy.random.random(3) - 0.5 | |
>>> R = reflection_matrix(v0, v1) | |
>>> numpy.allclose(2., numpy.trace(R)) | |
True | |
>>> numpy.allclose(v0, numpy.dot(R, v0)) | |
True | |
>>> v2 = v0.copy() | |
>>> v2[:3] += v1 | |
>>> v3 = v0.copy() | |
>>> v2[:3] -= v1 | |
>>> numpy.allclose(v2, numpy.dot(R, v3)) | |
True | |
""" | |
normal = unit_vector(normal[:3]) | |
M = numpy.identity(4) | |
M[:3, :3] -= 2.0 * numpy.outer(normal, normal) | |
M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal | |
return M | |
def reflection_from_matrix(matrix): | |
"""Return mirror plane point and normal vector from reflection matrix. | |
>>> v0 = numpy.random.random(3) - 0.5 | |
>>> v1 = numpy.random.random(3) - 0.5 | |
>>> M0 = reflection_matrix(v0, v1) | |
>>> point, normal = reflection_from_matrix(M0) | |
>>> M1 = reflection_matrix(point, normal) | |
>>> is_same_transform(M0, M1) | |
True | |
""" | |
M = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
# normal: unit eigenvector corresponding to eigenvalue -1 | |
l, V = numpy.linalg.eig(M[:3, :3]) | |
i = numpy.where(abs(numpy.real(l) + 1.0) < 1e-8)[0] | |
if not len(i): | |
raise ValueError("no unit eigenvector corresponding to eigenvalue -1") | |
normal = numpy.real(V[:, i[0]]).squeeze() | |
# point: any unit eigenvector corresponding to eigenvalue 1 | |
l, V = numpy.linalg.eig(M) | |
i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] | |
if not len(i): | |
raise ValueError("no unit eigenvector corresponding to eigenvalue 1") | |
point = numpy.real(V[:, i[-1]]).squeeze() | |
point /= point[3] | |
return point, normal | |
def rotation_matrix(angle, direction, point=None): | |
"""Return matrix to rotate about axis defined by point and direction. | |
>>> angle = (random.random() - 0.5) * (2*math.pi) | |
>>> direc = numpy.random.random(3) - 0.5 | |
>>> point = numpy.random.random(3) - 0.5 | |
>>> R0 = rotation_matrix(angle, direc, point) | |
>>> R1 = rotation_matrix(angle-2*math.pi, direc, point) | |
>>> is_same_transform(R0, R1) | |
True | |
>>> R0 = rotation_matrix(angle, direc, point) | |
>>> R1 = rotation_matrix(-angle, -direc, point) | |
>>> is_same_transform(R0, R1) | |
True | |
>>> I = numpy.identity(4, numpy.float64) | |
>>> numpy.allclose(I, rotation_matrix(math.pi*2, direc)) | |
True | |
>>> numpy.allclose(2., numpy.trace(rotation_matrix(math.pi/2, | |
... direc, point))) | |
True | |
""" | |
sina = math.sin(angle) | |
cosa = math.cos(angle) | |
direction = unit_vector(direction[:3]) | |
# rotation matrix around unit vector | |
R = numpy.array(((cosa, 0.0, 0.0), | |
(0.0, cosa, 0.0), | |
(0.0, 0.0, cosa)), dtype=numpy.float64) | |
R += numpy.outer(direction, direction) * (1.0 - cosa) | |
direction *= sina | |
R += numpy.array(((0.0, -direction[2], direction[1]), | |
(direction[2], 0.0, -direction[0]), | |
(-direction[1], direction[0], 0.0)), | |
dtype=numpy.float64) | |
M = numpy.identity(4) | |
M[:3, :3] = R | |
if point is not None: | |
# rotation not around origin | |
point = numpy.array(point[:3], dtype=numpy.float64, copy=False) | |
M[:3, 3] = point - numpy.dot(R, point) | |
return M | |
def rotation_from_matrix(matrix): | |
"""Return rotation angle and axis from rotation matrix. | |
>>> angle = (random.random() - 0.5) * (2*math.pi) | |
>>> direc = numpy.random.random(3) - 0.5 | |
>>> point = numpy.random.random(3) - 0.5 | |
>>> R0 = rotation_matrix(angle, direc, point) | |
>>> angle, direc, point = rotation_from_matrix(R0) | |
>>> R1 = rotation_matrix(angle, direc, point) | |
>>> is_same_transform(R0, R1) | |
True | |
""" | |
R = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
R33 = R[:3, :3] | |
# direction: unit eigenvector of R33 corresponding to eigenvalue of 1 | |
l, W = numpy.linalg.eig(R33.T) | |
i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] | |
if not len(i): | |
raise ValueError("no unit eigenvector corresponding to eigenvalue 1") | |
direction = numpy.real(W[:, i[-1]]).squeeze() | |
# point: unit eigenvector of R33 corresponding to eigenvalue of 1 | |
l, Q = numpy.linalg.eig(R) | |
i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] | |
if not len(i): | |
raise ValueError("no unit eigenvector corresponding to eigenvalue 1") | |
point = numpy.real(Q[:, i[-1]]).squeeze() | |
point /= point[3] | |
# rotation angle depending on direction | |
cosa = (numpy.trace(R33) - 1.0) / 2.0 | |
if abs(direction[2]) > 1e-8: | |
sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2] | |
elif abs(direction[1]) > 1e-8: | |
sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1] | |
else: | |
sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0] | |
angle = math.atan2(sina, cosa) | |
return angle, direction, point | |
def scale_matrix(factor, origin=None, direction=None): | |
"""Return matrix to scale by factor around origin in direction. | |
Use factor -1 for point symmetry. | |
>>> v = (numpy.random.rand(4, 5) - 0.5) * 20.0 | |
>>> v[3] = 1.0 | |
>>> S = scale_matrix(-1.234) | |
>>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3]) | |
True | |
>>> factor = random.random() * 10 - 5 | |
>>> origin = numpy.random.random(3) - 0.5 | |
>>> direct = numpy.random.random(3) - 0.5 | |
>>> S = scale_matrix(factor, origin) | |
>>> S = scale_matrix(factor, origin, direct) | |
""" | |
if direction is None: | |
# uniform scaling | |
M = numpy.array(((factor, 0.0, 0.0, 0.0), | |
(0.0, factor, 0.0, 0.0), | |
(0.0, 0.0, factor, 0.0), | |
(0.0, 0.0, 0.0, 1.0)), dtype=numpy.float64) | |
if origin is not None: | |
M[:3, 3] = origin[:3] | |
M[:3, 3] *= 1.0 - factor | |
else: | |
# nonuniform scaling | |
direction = unit_vector(direction[:3]) | |
factor = 1.0 - factor | |
M = numpy.identity(4) | |
M[:3, :3] -= factor * numpy.outer(direction, direction) | |
if origin is not None: | |
M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction | |
return M | |
def scale_from_matrix(matrix): | |
"""Return scaling factor, origin and direction from scaling matrix. | |
>>> factor = random.random() * 10 - 5 | |
>>> origin = numpy.random.random(3) - 0.5 | |
>>> direct = numpy.random.random(3) - 0.5 | |
>>> S0 = scale_matrix(factor, origin) | |
>>> factor, origin, direction = scale_from_matrix(S0) | |
>>> S1 = scale_matrix(factor, origin, direction) | |
>>> is_same_transform(S0, S1) | |
True | |
>>> S0 = scale_matrix(factor, origin, direct) | |
>>> factor, origin, direction = scale_from_matrix(S0) | |
>>> S1 = scale_matrix(factor, origin, direction) | |
>>> is_same_transform(S0, S1) | |
True | |
""" | |
M = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
M33 = M[:3, :3] | |
factor = numpy.trace(M33) - 2.0 | |
try: | |
# direction: unit eigenvector corresponding to eigenvalue factor | |
l, V = numpy.linalg.eig(M33) | |
i = numpy.where(abs(numpy.real(l) - factor) < 1e-8)[0][0] | |
direction = numpy.real(V[:, i]).squeeze() | |
direction /= vector_norm(direction) | |
except IndexError: | |
# uniform scaling | |
factor = (factor + 2.0) / 3.0 | |
direction = None | |
# origin: any eigenvector corresponding to eigenvalue 1 | |
l, V = numpy.linalg.eig(M) | |
i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] | |
if not len(i): | |
raise ValueError("no eigenvector corresponding to eigenvalue 1") | |
origin = numpy.real(V[:, i[-1]]).squeeze() | |
origin /= origin[3] | |
return factor, origin, direction | |
def projection_matrix(point, normal, direction=None, | |
perspective=None, pseudo=False): | |
"""Return matrix to project onto plane defined by point and normal. | |
Using either perspective point, projection direction, or none of both. | |
If pseudo is True, perspective projections will preserve relative depth | |
such that Perspective = dot(Orthogonal, PseudoPerspective). | |
>>> P = projection_matrix((0, 0, 0), (1, 0, 0)) | |
>>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:]) | |
True | |
>>> point = numpy.random.random(3) - 0.5 | |
>>> normal = numpy.random.random(3) - 0.5 | |
>>> direct = numpy.random.random(3) - 0.5 | |
>>> persp = numpy.random.random(3) - 0.5 | |
>>> P0 = projection_matrix(point, normal) | |
>>> P1 = projection_matrix(point, normal, direction=direct) | |
>>> P2 = projection_matrix(point, normal, perspective=persp) | |
>>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True) | |
>>> is_same_transform(P2, numpy.dot(P0, P3)) | |
True | |
>>> P = projection_matrix((3, 0, 0), (1, 1, 0), (1, 0, 0)) | |
>>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20.0 | |
>>> v0[3] = 1.0 | |
>>> v1 = numpy.dot(P, v0) | |
>>> numpy.allclose(v1[1], v0[1]) | |
True | |
>>> numpy.allclose(v1[0], 3.0-v1[1]) | |
True | |
""" | |
M = numpy.identity(4) | |
point = numpy.array(point[:3], dtype=numpy.float64, copy=False) | |
normal = unit_vector(normal[:3]) | |
if perspective is not None: | |
# perspective projection | |
perspective = numpy.array(perspective[:3], dtype=numpy.float64, | |
copy=False) | |
M[0, 0] = M[1, 1] = M[2, 2] = numpy.dot(perspective-point, normal) | |
M[:3, :3] -= numpy.outer(perspective, normal) | |
if pseudo: | |
# preserve relative depth | |
M[:3, :3] -= numpy.outer(normal, normal) | |
M[:3, 3] = numpy.dot(point, normal) * (perspective+normal) | |
else: | |
M[:3, 3] = numpy.dot(point, normal) * perspective | |
M[3, :3] = -normal | |
M[3, 3] = numpy.dot(perspective, normal) | |
elif direction is not None: | |
# parallel projection | |
direction = numpy.array(direction[:3], dtype=numpy.float64, copy=False) | |
scale = numpy.dot(direction, normal) | |
M[:3, :3] -= numpy.outer(direction, normal) / scale | |
M[:3, 3] = direction * (numpy.dot(point, normal) / scale) | |
else: | |
# orthogonal projection | |
M[:3, :3] -= numpy.outer(normal, normal) | |
M[:3, 3] = numpy.dot(point, normal) * normal | |
return M | |
def projection_from_matrix(matrix, pseudo=False): | |
"""Return projection plane and perspective point from projection matrix. | |
Return values are same as arguments for projection_matrix function: | |
point, normal, direction, perspective, and pseudo. | |
>>> point = numpy.random.random(3) - 0.5 | |
>>> normal = numpy.random.random(3) - 0.5 | |
>>> direct = numpy.random.random(3) - 0.5 | |
>>> persp = numpy.random.random(3) - 0.5 | |
>>> P0 = projection_matrix(point, normal) | |
>>> result = projection_from_matrix(P0) | |
>>> P1 = projection_matrix(*result) | |
>>> is_same_transform(P0, P1) | |
True | |
>>> P0 = projection_matrix(point, normal, direct) | |
>>> result = projection_from_matrix(P0) | |
>>> P1 = projection_matrix(*result) | |
>>> is_same_transform(P0, P1) | |
True | |
>>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False) | |
>>> result = projection_from_matrix(P0, pseudo=False) | |
>>> P1 = projection_matrix(*result) | |
>>> is_same_transform(P0, P1) | |
True | |
>>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True) | |
>>> result = projection_from_matrix(P0, pseudo=True) | |
>>> P1 = projection_matrix(*result) | |
>>> is_same_transform(P0, P1) | |
True | |
""" | |
M = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
M33 = M[:3, :3] | |
l, V = numpy.linalg.eig(M) | |
i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] | |
if not pseudo and len(i): | |
# point: any eigenvector corresponding to eigenvalue 1 | |
point = numpy.real(V[:, i[-1]]).squeeze() | |
point /= point[3] | |
# direction: unit eigenvector corresponding to eigenvalue 0 | |
l, V = numpy.linalg.eig(M33) | |
i = numpy.where(abs(numpy.real(l)) < 1e-8)[0] | |
if not len(i): | |
raise ValueError("no eigenvector corresponding to eigenvalue 0") | |
direction = numpy.real(V[:, i[0]]).squeeze() | |
direction /= vector_norm(direction) | |
# normal: unit eigenvector of M33.T corresponding to eigenvalue 0 | |
l, V = numpy.linalg.eig(M33.T) | |
i = numpy.where(abs(numpy.real(l)) < 1e-8)[0] | |
if len(i): | |
# parallel projection | |
normal = numpy.real(V[:, i[0]]).squeeze() | |
normal /= vector_norm(normal) | |
return point, normal, direction, None, False | |
else: | |
# orthogonal projection, where normal equals direction vector | |
return point, direction, None, None, False | |
else: | |
# perspective projection | |
i = numpy.where(abs(numpy.real(l)) > 1e-8)[0] | |
if not len(i): | |
raise ValueError( | |
"no eigenvector not corresponding to eigenvalue 0") | |
point = numpy.real(V[:, i[-1]]).squeeze() | |
point /= point[3] | |
normal = - M[3, :3] | |
perspective = M[:3, 3] / numpy.dot(point[:3], normal) | |
if pseudo: | |
perspective -= normal | |
return point, normal, None, perspective, pseudo | |
def clip_matrix(left, right, bottom, top, near, far, perspective=False): | |
"""Return matrix to obtain normalized device coordinates from frustrum. | |
The frustrum bounds are axis-aligned along x (left, right), | |
y (bottom, top) and z (near, far). | |
Normalized device coordinates are in range [-1, 1] if coordinates are | |
inside the frustrum. | |
If perspective is True the frustrum is a truncated pyramid with the | |
perspective point at origin and direction along z axis, otherwise an | |
orthographic canonical view volume (a box). | |
Homogeneous coordinates transformed by the perspective clip matrix | |
need to be dehomogenized (devided by w coordinate). | |
>>> frustrum = numpy.random.rand(6) | |
>>> frustrum[1] += frustrum[0] | |
>>> frustrum[3] += frustrum[2] | |
>>> frustrum[5] += frustrum[4] | |
>>> M = clip_matrix(*frustrum, perspective=False) | |
>>> numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0]) | |
array([-1., -1., -1., 1.]) | |
>>> numpy.dot(M, [frustrum[1], frustrum[3], frustrum[5], 1.0]) | |
array([ 1., 1., 1., 1.]) | |
>>> M = clip_matrix(*frustrum, perspective=True) | |
>>> v = numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0]) | |
>>> v / v[3] | |
array([-1., -1., -1., 1.]) | |
>>> v = numpy.dot(M, [frustrum[1], frustrum[3], frustrum[4], 1.0]) | |
>>> v / v[3] | |
array([ 1., 1., -1., 1.]) | |
""" | |
if left >= right or bottom >= top or near >= far: | |
raise ValueError("invalid frustrum") | |
if perspective: | |
if near <= _EPS: | |
raise ValueError("invalid frustrum: near <= 0") | |
t = 2.0 * near | |
M = ((-t/(right-left), 0.0, (right+left)/(right-left), 0.0), | |
(0.0, -t/(top-bottom), (top+bottom)/(top-bottom), 0.0), | |
(0.0, 0.0, -(far+near)/(far-near), t*far/(far-near)), | |
(0.0, 0.0, -1.0, 0.0)) | |
else: | |
M = ((2.0/(right-left), 0.0, 0.0, (right+left)/(left-right)), | |
(0.0, 2.0/(top-bottom), 0.0, (top+bottom)/(bottom-top)), | |
(0.0, 0.0, 2.0/(far-near), (far+near)/(near-far)), | |
(0.0, 0.0, 0.0, 1.0)) | |
return numpy.array(M, dtype=numpy.float64) | |
def shear_matrix(angle, direction, point, normal): | |
"""Return matrix to shear by angle along direction vector on shear plane. | |
The shear plane is defined by a point and normal vector. The direction | |
vector must be orthogonal to the plane's normal vector. | |
A point P is transformed by the shear matrix into P" such that | |
the vector P-P" is parallel to the direction vector and its extent is | |
given by the angle of P-P'-P", where P' is the orthogonal projection | |
of P onto the shear plane. | |
>>> angle = (random.random() - 0.5) * 4*math.pi | |
>>> direct = numpy.random.random(3) - 0.5 | |
>>> point = numpy.random.random(3) - 0.5 | |
>>> normal = numpy.cross(direct, numpy.random.random(3)) | |
>>> S = shear_matrix(angle, direct, point, normal) | |
>>> numpy.allclose(1.0, numpy.linalg.det(S)) | |
True | |
""" | |
normal = unit_vector(normal[:3]) | |
direction = unit_vector(direction[:3]) | |
if abs(numpy.dot(normal, direction)) > 1e-6: | |
raise ValueError("direction and normal vectors are not orthogonal") | |
angle = math.tan(angle) | |
M = numpy.identity(4) | |
M[:3, :3] += angle * numpy.outer(direction, normal) | |
M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction | |
return M | |
def shear_from_matrix(matrix): | |
"""Return shear angle, direction and plane from shear matrix. | |
>>> angle = (random.random() - 0.5) * 4*math.pi | |
>>> direct = numpy.random.random(3) - 0.5 | |
>>> point = numpy.random.random(3) - 0.5 | |
>>> normal = numpy.cross(direct, numpy.random.random(3)) | |
>>> S0 = shear_matrix(angle, direct, point, normal) | |
>>> angle, direct, point, normal = shear_from_matrix(S0) | |
>>> S1 = shear_matrix(angle, direct, point, normal) | |
>>> is_same_transform(S0, S1) | |
True | |
""" | |
M = numpy.array(matrix, dtype=numpy.float64, copy=False) | |
M33 = M[:3, :3] | |
# normal: cross independent eigenvectors corresponding to the eigenvalue 1 | |
l, V = numpy.linalg.eig(M33) | |
i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-4)[0] | |
if len(i) < 2: | |
raise ValueError("No two linear independent eigenvectors found %s" % l) | |
V = numpy.real(V[:, i]).squeeze().T | |
lenorm = -1.0 | |
for i0, i1 in ((0, 1), (0, 2), (1, 2)): | |
n = numpy.cross(V[i0], V[i1]) | |
l = vector_norm(n) | |
if l > lenorm: | |
lenorm = l | |
normal = n | |
normal /= lenorm | |
# direction and angle | |
direction = numpy.dot(M33 - numpy.identity(3), normal) | |
angle = vector_norm(direction) | |
direction /= angle | |
angle = math.atan(angle) | |
# point: eigenvector corresponding to eigenvalue 1 | |
l, V = numpy.linalg.eig(M) | |
i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0] | |
if not len(i): | |
raise ValueError("no eigenvector corresponding to eigenvalue 1") | |
point = numpy.real(V[:, i[-1]]).squeeze() | |
point /= point[3] | |
return angle, direction, point, normal | |
def decompose_matrix(matrix): | |
"""Return sequence of transformations from transformation matrix. | |
matrix : array_like | |
Non-degenerative homogeneous transformation matrix | |
Return tuple of: | |
scale : vector of 3 scaling factors | |
shear : list of shear factors for x-y, x-z, y-z axes | |
angles : list of Euler angles about static x, y, z axes | |
translate : translation vector along x, y, z axes | |
perspective : perspective partition of matrix | |
Raise ValueError if matrix is of wrong type or degenerative. | |
>>> T0 = translation_matrix((1, 2, 3)) | |
>>> scale, shear, angles, trans, persp = decompose_matrix(T0) | |
>>> T1 = translation_matrix(trans) | |
>>> numpy.allclose(T0, T1) | |
True | |
>>> S = scale_matrix(0.123) | |
>>> scale, shear, angles, trans, persp = decompose_matrix(S) | |
>>> scale[0] | |
0.123 | |
>>> R0 = euler_matrix(1, 2, 3) | |
>>> scale, shear, angles, trans, persp = decompose_matrix(R0) | |
>>> R1 = euler_matrix(*angles) | |
>>> numpy.allclose(R0, R1) | |
True | |
""" | |
M = numpy.array(matrix, dtype=numpy.float64, copy=True).T | |
if abs(M[3, 3]) < _EPS: | |
raise ValueError("M[3, 3] is zero") | |
M /= M[3, 3] | |
P = M.copy() | |
P[:, 3] = 0, 0, 0, 1 | |
if not numpy.linalg.det(P): | |
raise ValueError("Matrix is singular") | |
scale = numpy.zeros((3, ), dtype=numpy.float64) | |
shear = [0, 0, 0] | |
angles = [0, 0, 0] | |
if any(abs(M[:3, 3]) > _EPS): | |
perspective = numpy.dot(M[:, 3], numpy.linalg.inv(P.T)) | |
M[:, 3] = 0, 0, 0, 1 | |
else: | |
perspective = numpy.array((0, 0, 0, 1), dtype=numpy.float64) | |
translate = M[3, :3].copy() | |
M[3, :3] = 0 | |
row = M[:3, :3].copy() | |
scale[0] = vector_norm(row[0]) | |
row[0] /= scale[0] | |
shear[0] = numpy.dot(row[0], row[1]) | |
row[1] -= row[0] * shear[0] | |
scale[1] = vector_norm(row[1]) | |
row[1] /= scale[1] | |
shear[0] /= scale[1] | |
shear[1] = numpy.dot(row[0], row[2]) | |
row[2] -= row[0] * shear[1] | |
shear[2] = numpy.dot(row[1], row[2]) | |
row[2] -= row[1] * shear[2] | |
scale[2] = vector_norm(row[2]) | |
row[2] /= scale[2] | |
shear[1:] /= scale[2] | |
if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0: | |
scale *= -1 | |
row *= -1 | |
angles[1] = math.asin(-row[0, 2]) | |
if math.cos(angles[1]): | |
angles[0] = math.atan2(row[1, 2], row[2, 2]) | |
angles[2] = math.atan2(row[0, 1], row[0, 0]) | |
else: | |
#angles[0] = math.atan2(row[1, 0], row[1, 1]) | |
angles[0] = math.atan2(-row[2, 1], row[1, 1]) | |
angles[2] = 0.0 | |
return scale, shear, angles, translate, perspective | |
def compose_matrix(scale=None, shear=None, angles=None, translate=None, | |
perspective=None): | |
"""Return transformation matrix from sequence of transformations. | |
This is the inverse of the decompose_matrix function. | |
Sequence of transformations: | |
scale : vector of 3 scaling factors | |
shear : list of shear factors for x-y, x-z, y-z axes | |
angles : list of Euler angles about static x, y, z axes | |
translate : translation vector along x, y, z axes | |
perspective : perspective partition of matrix | |
>>> scale = numpy.random.random(3) - 0.5 | |
>>> shear = numpy.random.random(3) - 0.5 | |
>>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi) | |
>>> trans = numpy.random.random(3) - 0.5 | |
>>> persp = numpy.random.random(4) - 0.5 | |
>>> M0 = compose_matrix(scale, shear, angles, trans, persp) | |
>>> result = decompose_matrix(M0) | |
>>> M1 = compose_matrix(*result) | |
>>> is_same_transform(M0, M1) | |
True | |
""" | |
M = numpy.identity(4) | |
if perspective is not None: | |
P = numpy.identity(4) | |
P[3, :] = perspective[:4] | |
M = numpy.dot(M, P) | |
if translate is not None: | |
T = numpy.identity(4) | |
T[:3, 3] = translate[:3] | |
M = numpy.dot(M, T) | |
if angles is not None: | |
R = euler_matrix(angles[0], angles[1], angles[2], 'sxyz') | |
M = numpy.dot(M, R) | |
if shear is not None: | |
Z = numpy.identity(4) | |
Z[1, 2] = shear[2] | |
Z[0, 2] = shear[1] | |
Z[0, 1] = shear[0] | |
M = numpy.dot(M, Z) | |
if scale is not None: | |
S = numpy.identity(4) | |
S[0, 0] = scale[0] | |
S[1, 1] = scale[1] | |
S[2, 2] = scale[2] | |
M = numpy.dot(M, S) | |
M /= M[3, 3] | |
return M | |
def orthogonalization_matrix(lengths, angles): | |
"""Return orthogonalization matrix for crystallographic cell coordinates. | |
Angles are expected in degrees. | |
The de-orthogonalization matrix is the inverse. | |
>>> O = orthogonalization_matrix((10., 10., 10.), (90., 90., 90.)) | |
>>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10) | |
True | |
>>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7]) | |
>>> numpy.allclose(numpy.sum(O), 43.063229) | |
True | |
""" | |
a, b, c = lengths | |
angles = numpy.radians(angles) | |
sina, sinb, _ = numpy.sin(angles) | |
cosa, cosb, cosg = numpy.cos(angles) | |
co = (cosa * cosb - cosg) / (sina * sinb) | |
return numpy.array(( | |
(a*sinb*math.sqrt(1.0-co*co), 0.0, 0.0, 0.0), | |
(-a*sinb*co, b*sina, 0.0, 0.0), | |
(a*cosb, b*cosa, c, 0.0), | |
(0.0, 0.0, 0.0, 1.0)), | |
dtype=numpy.float64) | |
def superimposition_matrix(v0, v1, scaling=False, usesvd=True): | |
"""Return matrix to transform given vector set into second vector set. | |
v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 vectors. | |
If usesvd is True, the weighted sum of squared deviations (RMSD) is | |
minimized according to the algorithm by W. Kabsch [8]. Otherwise the | |
quaternion based algorithm by B. Horn [9] is used (slower when using | |
this Python implementation). | |
The returned matrix performs rotation, translation and uniform scaling | |
(if specified). | |
>>> v0 = numpy.random.rand(3, 10) | |
>>> M = superimposition_matrix(v0, v0) | |
>>> numpy.allclose(M, numpy.identity(4)) | |
True | |
>>> R = random_rotation_matrix(numpy.random.random(3)) | |
>>> v0 = ((1,0,0), (0,1,0), (0,0,1), (1,1,1)) | |
>>> v1 = numpy.dot(R, v0) | |
>>> M = superimposition_matrix(v0, v1) | |
>>> numpy.allclose(v1, numpy.dot(M, v0)) | |
True | |
>>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20.0 | |
>>> v0[3] = 1.0 | |
>>> v1 = numpy.dot(R, v0) | |
>>> M = superimposition_matrix(v0, v1) | |
>>> numpy.allclose(v1, numpy.dot(M, v0)) | |
True | |
>>> S = scale_matrix(random.random()) | |
>>> T = translation_matrix(numpy.random.random(3)-0.5) | |
>>> M = concatenate_matrices(T, R, S) | |
>>> v1 = numpy.dot(M, v0) | |
>>> v0[:3] += numpy.random.normal(0.0, 1e-9, 300).reshape(3, -1) | |
>>> M = superimposition_matrix(v0, v1, scaling=True) | |
>>> numpy.allclose(v1, numpy.dot(M, v0)) | |
True | |
>>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False) | |
>>> numpy.allclose(v1, numpy.dot(M, v0)) | |
True | |
>>> v = numpy.empty((4, 100, 3), dtype=numpy.float64) | |
>>> v[:, :, 0] = v0 | |
>>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False) | |
>>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0])) | |
True | |
""" | |
v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3] | |
v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3] | |
if v0.shape != v1.shape or v0.shape[1] < 3: | |
raise ValueError("Vector sets are of wrong shape or type.") | |
# move centroids to origin | |
t0 = numpy.mean(v0, axis=1) | |
t1 = numpy.mean(v1, axis=1) | |
v0 = v0 - t0.reshape(3, 1) | |
v1 = v1 - t1.reshape(3, 1) | |
if usesvd: | |
# Singular Value Decomposition of covariance matrix | |
u, s, vh = numpy.linalg.svd(numpy.dot(v1, v0.T)) | |
# rotation matrix from SVD orthonormal bases | |
R = numpy.dot(u, vh) | |
if numpy.linalg.det(R) < 0.0: | |
# R does not constitute right handed system | |
R -= numpy.outer(u[:, 2], vh[2, :]*2.0) | |
s[-1] *= -1.0 | |
# homogeneous transformation matrix | |
M = numpy.identity(4) | |
M[:3, :3] = R | |
else: | |
# compute symmetric matrix N | |
xx, yy, zz = numpy.sum(v0 * v1, axis=1) | |
xy, yz, zx = numpy.sum(v0 * numpy.roll(v1, -1, axis=0), axis=1) | |
xz, yx, zy = numpy.sum(v0 * numpy.roll(v1, -2, axis=0), axis=1) | |
N = ((xx+yy+zz, yz-zy, zx-xz, xy-yx), | |
(yz-zy, xx-yy-zz, xy+yx, zx+xz), | |
(zx-xz, xy+yx, -xx+yy-zz, yz+zy), | |
(xy-yx, zx+xz, yz+zy, -xx-yy+zz)) | |
# quaternion: eigenvector corresponding to most positive eigenvalue | |
l, V = numpy.linalg.eig(N) | |
q = V[:, numpy.argmax(l)] | |
q /= vector_norm(q) # unit quaternion | |
q = numpy.roll(q, -1) # move w component to end | |
# homogeneous transformation matrix | |
M = quaternion_matrix(q) | |
# scale: ratio of rms deviations from centroid | |
if scaling: | |
v0 *= v0 | |
v1 *= v1 | |
M[:3, :3] *= math.sqrt(numpy.sum(v1) / numpy.sum(v0)) | |
# translation | |
M[:3, 3] = t1 | |
T = numpy.identity(4) | |
T[:3, 3] = -t0 | |
M = numpy.dot(M, T) | |
return M | |
def euler_matrix(ai, aj, ak, axes='sxyz'): | |
"""Return homogeneous rotation matrix from Euler angles and axis sequence. | |
ai, aj, ak : Euler's roll, pitch and yaw angles | |
axes : One of 24 axis sequences as string or encoded tuple | |
>>> R = euler_matrix(1, 2, 3, 'syxz') | |
>>> numpy.allclose(numpy.sum(R[0]), -1.34786452) | |
True | |
>>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1)) | |
>>> numpy.allclose(numpy.sum(R[0]), -0.383436184) | |
True | |
>>> ai, aj, ak = (4.0*math.pi) * (numpy.random.random(3) - 0.5) | |
>>> for axes in _AXES2TUPLE.keys(): | |
... R = euler_matrix(ai, aj, ak, axes) | |
>>> for axes in _TUPLE2AXES.keys(): | |
... R = euler_matrix(ai, aj, ak, axes) | |
""" | |
try: | |
firstaxis, parity, repetition, frame = _AXES2TUPLE[axes] | |
except (AttributeError, KeyError): | |
_ = _TUPLE2AXES[axes] | |
firstaxis, parity, repetition, frame = axes | |
i = firstaxis | |
j = _NEXT_AXIS[i+parity] | |
k = _NEXT_AXIS[i-parity+1] | |
if frame: | |
ai, ak = ak, ai | |
if parity: | |
ai, aj, ak = -ai, -aj, -ak | |
si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak) | |
ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak) | |
cc, cs = ci*ck, ci*sk | |
sc, ss = si*ck, si*sk | |
M = numpy.identity(4) | |
if repetition: | |
M[i, i] = cj | |
M[i, j] = sj*si | |
M[i, k] = sj*ci | |
M[j, i] = sj*sk | |
M[j, j] = -cj*ss+cc | |
M[j, k] = -cj*cs-sc | |
M[k, i] = -sj*ck | |
M[k, j] = cj*sc+cs | |
M[k, k] = cj*cc-ss | |
else: | |
M[i, i] = cj*ck | |
M[i, j] = sj*sc-cs | |
M[i, k] = sj*cc+ss | |
M[j, i] = cj*sk | |
M[j, j] = sj*ss+cc | |
M[j, k] = sj*cs-sc | |
M[k, i] = -sj | |
M[k, j] = cj*si | |
M[k, k] = cj*ci | |
return M | |
def euler_from_matrix(matrix, axes='sxyz'): | |
"""Return Euler angles from rotation matrix for specified axis sequence. | |
axes : One of 24 axis sequences as string or encoded tuple | |
Note that many Euler angle triplets can describe one matrix. | |
>>> R0 = euler_matrix(1, 2, 3, 'syxz') | |
>>> al, be, ga = euler_from_matrix(R0, 'syxz') | |
>>> R1 = euler_matrix(al, be, ga, 'syxz') | |
>>> numpy.allclose(R0, R1) | |
True | |
>>> angles = (4.0*math.pi) * (numpy.random.random(3) - 0.5) | |
>>> for axes in _AXES2TUPLE.keys(): | |
... R0 = euler_matrix(axes=axes, *angles) | |
... R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes)) | |
... if not numpy.allclose(R0, R1): print axes, "failed" | |
""" | |
try: | |
firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()] | |
except (AttributeError, KeyError): | |
_ = _TUPLE2AXES[axes] | |
firstaxis, parity, repetition, frame = axes | |
i = firstaxis | |
j = _NEXT_AXIS[i+parity] | |
k = _NEXT_AXIS[i-parity+1] | |
M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:3, :3] | |
if repetition: | |
sy = math.sqrt(M[i, j]*M[i, j] + M[i, k]*M[i, k]) | |
if sy > _EPS: | |
ax = math.atan2(M[i, j], M[i, k]) | |
ay = math.atan2(sy, M[i, i]) | |
az = math.atan2(M[j, i], -M[k, i]) | |
else: | |
ax = math.atan2(-M[j, k], M[j, j]) | |
ay = math.atan2(sy, M[i, i]) | |
az = 0.0 | |
else: | |
cy = math.sqrt(M[i, i]*M[i, i] + M[j, i]*M[j, i]) | |
if cy > _EPS: | |
ax = math.atan2(M[k, j], M[k, k]) | |
ay = math.atan2(-M[k, i], cy) | |
az = math.atan2(M[j, i], M[i, i]) | |
else: | |
ax = math.atan2(-M[j, k], M[j, j]) | |
ay = math.atan2(-M[k, i], cy) | |
az = 0.0 | |
if parity: | |
ax, ay, az = -ax, -ay, -az | |
if frame: | |
ax, az = az, ax | |
return ax, ay, az | |
def euler_from_quaternion(quaternion, axes='sxyz'): | |
"""Return Euler angles from quaternion for specified axis sequence. | |
>>> angles = euler_from_quaternion([0.06146124, 0, 0, 0.99810947]) | |
>>> numpy.allclose(angles, [0.123, 0, 0]) | |
True | |
""" | |
return euler_from_matrix(quaternion_matrix(quaternion), axes) | |
def quaternion_from_euler(ai, aj, ak, axes='sxyz'): | |
"""Return quaternion from Euler angles and axis sequence. | |
ai, aj, ak : Euler's roll, pitch and yaw angles | |
axes : One of 24 axis sequences as string or encoded tuple | |
>>> q = quaternion_from_euler(1, 2, 3, 'ryxz') | |
>>> numpy.allclose(q, [0.310622, -0.718287, 0.444435, 0.435953]) | |
True | |
""" | |
try: | |
firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()] | |
except (AttributeError, KeyError): | |
_ = _TUPLE2AXES[axes] | |
firstaxis, parity, repetition, frame = axes | |
i = firstaxis | |
j = _NEXT_AXIS[i+parity] | |
k = _NEXT_AXIS[i-parity+1] | |
if frame: | |
ai, ak = ak, ai | |
if parity: | |
aj = -aj | |
ai /= 2.0 | |
aj /= 2.0 | |
ak /= 2.0 | |
ci = math.cos(ai) | |
si = math.sin(ai) | |
cj = math.cos(aj) | |
sj = math.sin(aj) | |
ck = math.cos(ak) | |
sk = math.sin(ak) | |
cc = ci*ck | |
cs = ci*sk | |
sc = si*ck | |
ss = si*sk | |
quaternion = numpy.empty((4, ), dtype=numpy.float64) | |
if repetition: | |
quaternion[i] = cj*(cs + sc) | |
quaternion[j] = sj*(cc + ss) | |
quaternion[k] = sj*(cs - sc) | |
quaternion[3] = cj*(cc - ss) | |
else: | |
quaternion[i] = cj*sc - sj*cs | |
quaternion[j] = cj*ss + sj*cc | |
quaternion[k] = cj*cs - sj*sc | |
quaternion[3] = cj*cc + sj*ss | |
if parity: | |
quaternion[j] *= -1 | |
return quaternion | |
def quaternion_about_axis(angle, axis): | |
"""Return quaternion for rotation about axis. | |
>>> q = quaternion_about_axis(0.123, (1, 0, 0)) | |
>>> numpy.allclose(q, [0.06146124, 0, 0, 0.99810947]) | |
True | |
""" | |
quaternion = numpy.zeros((4, ), dtype=numpy.float64) | |
quaternion[:3] = axis[:3] | |
qlen = vector_norm(quaternion) | |
if qlen > _EPS: | |
quaternion *= math.sin(angle/2.0) / qlen | |
quaternion[3] = math.cos(angle/2.0) | |
return quaternion | |
def matrix_from_quaternion(quaternion): | |
return quaternion_matrix(quaternion) | |
def quaternion_matrix(quaternion): | |
"""Return homogeneous rotation matrix from quaternion. | |
>>> R = quaternion_matrix([0.06146124, 0, 0, 0.99810947]) | |
>>> numpy.allclose(R, rotation_matrix(0.123, (1, 0, 0))) | |
True | |
""" | |
q = numpy.array(quaternion[:4], dtype=numpy.float64, copy=True) | |
nq = numpy.dot(q, q) | |
if nq < _EPS: | |
return numpy.identity(4) | |
q *= math.sqrt(2.0 / nq) | |
q = numpy.outer(q, q) | |
return numpy.array(( | |
(1.0-q[1, 1]-q[2, 2], q[0, 1]-q[2, 3], q[0, 2]+q[1, 3], 0.0), | |
(q[0, 1]+q[2, 3], 1.0-q[0, 0]-q[2, 2], q[1, 2]-q[0, 3], 0.0), | |
(q[0, 2]-q[1, 3], q[1, 2]+q[0, 3], 1.0-q[0, 0]-q[1, 1], 0.0), | |
(0.0, 0.0, 0.0, 1.0) | |
), dtype=numpy.float64) | |
def quaternionJPL_matrix(quaternion): | |
"""Return homogeneous rotation matrix from quaternion in JPL notation. | |
quaternion = [x y z w] | |
""" | |
q0 = quaternion[0] | |
q1 = quaternion[1] | |
q2 = quaternion[2] | |
q3 = quaternion[3] | |
return numpy.array([ | |
[q0**2 - q1**2 - q2**2 + q3**2, 2.0*q0*q1 + | |
2.0*q2*q3, 2.0*q0*q2 - 2.0*q1*q3, 0], | |
[2.0*q0*q1 - 2.0*q2*q3, - q0**2 + q1**2 - | |
q2**2 + q3**2, 2.0*q0*q3 + 2.0*q1*q2, 0], | |
[2.0*q0*q2 + 2.0*q1*q3, 2.0*q1*q2 - 2.0*q0 * | |
q3, - q0**2 - q1**2 + q2**2 + q3**2, 0], | |
[0, 0, 0, 1.0]], dtype=numpy.float64) | |
def quaternion_from_matrix(matrix): | |
"""Return quaternion from rotation matrix. | |
>>> R = rotation_matrix(0.123, (1, 2, 3)) | |
>>> q = quaternion_from_matrix(R) | |
>>> numpy.allclose(q, [0.0164262, 0.0328524, 0.0492786, 0.9981095]) | |
True | |
""" | |
q = numpy.empty((4, ), dtype=numpy.float64) | |
M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4] | |
t = numpy.trace(M) | |
if t > M[3, 3]: | |
q[3] = t | |
q[2] = M[1, 0] - M[0, 1] | |
q[1] = M[0, 2] - M[2, 0] | |
q[0] = M[2, 1] - M[1, 2] | |
else: | |
i, j, k = 0, 1, 2 | |
if M[1, 1] > M[0, 0]: | |
i, j, k = 1, 2, 0 | |
if M[2, 2] > M[i, i]: | |
i, j, k = 2, 0, 1 | |
t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3] | |
q[i] = t | |
q[j] = M[i, j] + M[j, i] | |
q[k] = M[k, i] + M[i, k] | |
q[3] = M[k, j] - M[j, k] | |
q *= 0.5 / math.sqrt(t * M[3, 3]) | |
return q | |
def quaternion_multiply(quaternion1, quaternion0): | |
"""Return multiplication of two quaternions. | |
>>> q = quaternion_multiply([1, -2, 3, 4], [-5, 6, 7, 8]) | |
>>> numpy.allclose(q, [-44, -14, 48, 28]) | |
True | |
""" | |
x0, y0, z0, w0 = quaternion0 | |
x1, y1, z1, w1 = quaternion1 | |
return numpy.array(( | |
x1*w0 + y1*z0 - z1*y0 + w1*x0, | |
-x1*z0 + y1*w0 + z1*x0 + w1*y0, | |
x1*y0 - y1*x0 + z1*w0 + w1*z0, | |
-x1*x0 - y1*y0 - z1*z0 + w1*w0), dtype=numpy.float64) | |
def quaternion_conjugate(quaternion): | |
"""Return conjugate of quaternion. | |
>>> q0 = random_quaternion() | |
>>> q1 = quaternion_conjugate(q0) | |
>>> q1[3] == q0[3] and all(q1[:3] == -q0[:3]) | |
True | |
""" | |
return numpy.array((-quaternion[0], -quaternion[1], | |
-quaternion[2], quaternion[3]), dtype=numpy.float64) | |
def quaternion_inverse(quaternion): | |
"""Return inverse of quaternion. | |
>>> q0 = random_quaternion() | |
>>> q1 = quaternion_inverse(q0) | |
>>> numpy.allclose(quaternion_multiply(q0, q1), [0, 0, 0, 1]) | |
True | |
""" | |
return quaternion_conjugate(quaternion) / numpy.dot(quaternion, quaternion) | |
def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True): | |
"""Return spherical linear interpolation between two quaternions. | |
>>> q0 = random_quaternion() | |
>>> q1 = random_quaternion() | |
>>> q = quaternion_slerp(q0, q1, 0.0) | |
>>> numpy.allclose(q, q0) | |
True | |
>>> q = quaternion_slerp(q0, q1, 1.0, 1) | |
>>> numpy.allclose(q, q1) | |
True | |
>>> q = quaternion_slerp(q0, q1, 0.5) | |
>>> angle = math.acos(numpy.dot(q0, q)) | |
>>> numpy.allclose(2.0, math.acos(numpy.dot(q0, q1)) / angle) or \ | |
numpy.allclose(2.0, math.acos(-numpy.dot(q0, q1)) / angle) | |
True | |
""" | |
q0 = unit_vector(quat0[:4]) | |
q1 = unit_vector(quat1[:4]) | |
if fraction == 0.0: | |
return q0 | |
elif fraction == 1.0: | |
return q1 | |
d = numpy.dot(q0, q1) | |
if abs(abs(d) - 1.0) < _EPS: | |
return q0 | |
if shortestpath and d < 0.0: | |
# invert rotation | |
d = -d | |
q1 *= -1.0 | |
angle = math.acos(d) + spin * math.pi | |
if abs(angle) < _EPS: | |
return q0 | |
isin = 1.0 / math.sin(angle) | |
q0 *= math.sin((1.0 - fraction) * angle) * isin | |
q1 *= math.sin(fraction * angle) * isin | |
q0 += q1 | |
return q0 | |
def random_quaternion(rand=None): | |
"""Return uniform random unit quaternion. | |
rand: array like or None | |
Three independent random variables that are uniformly distributed | |
between 0 and 1. | |
>>> q = random_quaternion() | |
>>> numpy.allclose(1.0, vector_norm(q)) | |
True | |
>>> q = random_quaternion(numpy.random.random(3)) | |
>>> q.shape | |
(4,) | |
""" | |
if rand is None: | |
rand = numpy.random.rand(3) | |
else: | |
assert len(rand) == 3 | |
r1 = numpy.sqrt(1.0 - rand[0]) | |
r2 = numpy.sqrt(rand[0]) | |
pi2 = math.pi * 2.0 | |
t1 = pi2 * rand[1] | |
t2 = pi2 * rand[2] | |
return numpy.array((numpy.sin(t1)*r1, | |
numpy.cos(t1)*r1, | |
numpy.sin(t2)*r2, | |
numpy.cos(t2)*r2), dtype=numpy.float64) | |
def random_rotation_matrix(rand=None): | |
"""Return uniform random rotation matrix. | |
rnd: array like | |
Three independent random variables that are uniformly distributed | |
between 0 and 1 for each returned quaternion. | |
>>> R = random_rotation_matrix() | |
>>> numpy.allclose(numpy.dot(R.T, R), numpy.identity(4)) | |
True | |
""" | |
return quaternion_matrix(random_quaternion(rand)) | |
def random_direction_3d(): | |
""" equal-area projection according to: | |
https://math.stackexchange.com/questions/44689/how-to-find-a-random-axis-or-unit-vector-in-3d | |
cfo, 2015/10/16 | |
""" | |
z = numpy.random.rand() * 2.0 - 1.0 | |
t = numpy.random.rand() * 2.0 * numpy.pi | |
r = numpy.sqrt(1.0 - z*z) | |
x = r * numpy.cos(t) | |
y = r * numpy.sin(t) | |
return numpy.array([x, y, z], dtype=numpy.float64) | |
class Arcball(object): | |
"""Virtual Trackball Control. | |
>>> ball = Arcball() | |
>>> ball = Arcball(initial=numpy.identity(4)) | |
>>> ball.place([320, 320], 320) | |
>>> ball.down([500, 250]) | |
>>> ball.drag([475, 275]) | |
>>> R = ball.matrix() | |
>>> numpy.allclose(numpy.sum(R), 3.90583455) | |
True | |
>>> ball = Arcball(initial=[0, 0, 0, 1]) | |
>>> ball.place([320, 320], 320) | |
>>> ball.setaxes([1,1,0], [-1, 1, 0]) | |
>>> ball.setconstrain(True) | |
>>> ball.down([400, 200]) | |
>>> ball.drag([200, 400]) | |
>>> R = ball.matrix() | |
>>> numpy.allclose(numpy.sum(R), 0.2055924) | |
True | |
>>> ball.next() | |
""" | |
def __init__(self, initial=None): | |
"""Initialize virtual trackball control. | |
initial : quaternion or rotation matrix | |
""" | |
self._axis = None | |
self._axes = None | |
self._radius = 1.0 | |
self._center = [0.0, 0.0] | |
self._vdown = numpy.array([0, 0, 1], dtype=numpy.float64) | |
self._constrain = False | |
if initial is None: | |
self._qdown = numpy.array([0, 0, 0, 1], dtype=numpy.float64) | |
else: | |
initial = numpy.array(initial, dtype=numpy.float64) | |
if initial.shape == (4, 4): | |
self._qdown = quaternion_from_matrix(initial) | |
elif initial.shape == (4, ): | |
initial /= vector_norm(initial) | |
self._qdown = initial | |
else: | |
raise ValueError("initial not a quaternion or matrix.") | |
self._qnow = self._qpre = self._qdown | |
def place(self, center, radius): | |
"""Place Arcball, e.g. when window size changes. | |
center : sequence[2] | |
Window coordinates of trackball center. | |
radius : float | |
Radius of trackball in window coordinates. | |
""" | |
self._radius = float(radius) | |
self._center[0] = center[0] | |
self._center[1] = center[1] | |
def setaxes(self, *axes): | |
"""Set axes to constrain rotations.""" | |
if axes is None: | |
self._axes = None | |
else: | |
self._axes = [unit_vector(axis) for axis in axes] | |
def setconstrain(self, constrain): | |
"""Set state of constrain to axis mode.""" | |
self._constrain = constrain == True | |
def getconstrain(self): | |
"""Return state of constrain to axis mode.""" | |
return self._constrain | |
def down(self, point): | |
"""Set initial cursor window coordinates and pick constrain-axis.""" | |
self._vdown = arcball_map_to_sphere(point, self._center, self._radius) | |
self._qdown = self._qpre = self._qnow | |
if self._constrain and self._axes is not None: | |
self._axis = arcball_nearest_axis(self._vdown, self._axes) | |
self._vdown = arcball_constrain_to_axis(self._vdown, self._axis) | |
else: | |
self._axis = None | |
def drag(self, point): | |
"""Update current cursor window coordinates.""" | |
vnow = arcball_map_to_sphere(point, self._center, self._radius) | |
if self._axis is not None: | |
vnow = arcball_constrain_to_axis(vnow, self._axis) | |
self._qpre = self._qnow | |
t = numpy.cross(self._vdown, vnow) | |
if numpy.dot(t, t) < _EPS: | |
self._qnow = self._qdown | |
else: | |
q = [t[0], t[1], t[2], numpy.dot(self._vdown, vnow)] | |
self._qnow = quaternion_multiply(q, self._qdown) | |
def next(self, acceleration=0.0): | |
"""Continue rotation in direction of last drag.""" | |
q = quaternion_slerp(self._qpre, self._qnow, 2.0+acceleration, False) | |
self._qpre, self._qnow = self._qnow, q | |
def matrix(self): | |
"""Return homogeneous rotation matrix.""" | |
return quaternion_matrix(self._qnow) | |
def arcball_map_to_sphere(point, center, radius): | |
"""Return unit sphere coordinates from window coordinates.""" | |
v = numpy.array(((point[0] - center[0]) / radius, | |
(center[1] - point[1]) / radius, | |
0.0), dtype=numpy.float64) | |
n = v[0]*v[0] + v[1]*v[1] | |
if n > 1.0: | |
v /= math.sqrt(n) # position outside of sphere | |
else: | |
v[2] = math.sqrt(1.0 - n) | |
return v | |
def arcball_constrain_to_axis(point, axis): | |
"""Return sphere point perpendicular to axis.""" | |
v = numpy.array(point, dtype=numpy.float64, copy=True) | |
a = numpy.array(axis, dtype=numpy.float64, copy=True) | |
v -= a * numpy.dot(a, v) # on plane | |
n = vector_norm(v) | |
if n > _EPS: | |
if v[2] < 0.0: | |
v *= -1.0 | |
v /= n | |
return v | |
if a[2] == 1.0: | |
return numpy.array([1, 0, 0], dtype=numpy.float64) | |
return unit_vector([-a[1], a[0], 0]) | |
def arcball_nearest_axis(point, axes): | |
"""Return axis, which arc is nearest to point.""" | |
point = numpy.array(point, dtype=numpy.float64, copy=False) | |
nearest = None | |
mx = -1.0 | |
for axis in axes: | |
t = numpy.dot(arcball_constrain_to_axis(point, axis), point) | |
if t > mx: | |
nearest = axis | |
mx = t | |
return nearest | |
# epsilon for testing whether a number is close to zero | |
_EPS = numpy.finfo(float).eps * 4.0 | |
# axis sequences for Euler angles | |
_NEXT_AXIS = [1, 2, 0, 1] | |
# map axes strings to/from tuples of inner axis, parity, repetition, frame | |
_AXES2TUPLE = { | |
'sxyz': (0, 0, 0, 0), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 1, 0, 0), | |
'sxzx': (0, 1, 1, 0), 'syzx': (1, 0, 0, 0), 'syzy': (1, 0, 1, 0), | |
'syxz': (1, 1, 0, 0), 'syxy': (1, 1, 1, 0), 'szxy': (2, 0, 0, 0), | |
'szxz': (2, 0, 1, 0), 'szyx': (2, 1, 0, 0), 'szyz': (2, 1, 1, 0), | |
'rzyx': (0, 0, 0, 1), 'rxyx': (0, 0, 1, 1), 'ryzx': (0, 1, 0, 1), | |
'rxzx': (0, 1, 1, 1), 'rxzy': (1, 0, 0, 1), 'ryzy': (1, 0, 1, 1), | |
'rzxy': (1, 1, 0, 1), 'ryxy': (1, 1, 1, 1), 'ryxz': (2, 0, 0, 1), | |
'rzxz': (2, 0, 1, 1), 'rxyz': (2, 1, 0, 1), 'rzyz': (2, 1, 1, 1)} | |
_TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items()) | |
# helper functions | |
def vector_norm(data, axis=None, out=None): | |
"""Return length, i.e. eucledian norm, of ndarray along axis. | |
>>> v = numpy.random.random(3) | |
>>> n = vector_norm(v) | |
>>> numpy.allclose(n, numpy.linalg.norm(v)) | |
True | |
>>> v = numpy.random.rand(6, 5, 3) | |
>>> n = vector_norm(v, axis=-1) | |
>>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2))) | |
True | |
>>> n = vector_norm(v, axis=1) | |
>>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) | |
True | |
>>> v = numpy.random.rand(5, 4, 3) | |
>>> n = numpy.empty((5, 3), dtype=numpy.float64) | |
>>> vector_norm(v, axis=1, out=n) | |
>>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1))) | |
True | |
>>> vector_norm([]) | |
0.0 | |
>>> vector_norm([1.0]) | |
1.0 | |
""" | |
data = numpy.array(data, dtype=numpy.float64, copy=True) | |
if out is None: | |
if data.ndim == 1: | |
return math.sqrt(numpy.dot(data, data)) | |
data *= data | |
out = numpy.atleast_1d(numpy.sum(data, axis=axis)) | |
numpy.sqrt(out, out) | |
return out | |
else: | |
data *= data | |
numpy.sum(data, axis=axis, out=out) | |
numpy.sqrt(out, out) | |
def unit_vector(data, axis=None, out=None): | |
"""Return ndarray normalized by length, i.e. eucledian norm, along axis. | |
>>> v0 = numpy.random.random(3) | |
>>> v1 = unit_vector(v0) | |
>>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0)) | |
True | |
>>> v0 = numpy.random.rand(5, 4, 3) | |
>>> v1 = unit_vector(v0, axis=-1) | |
>>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2) | |
>>> numpy.allclose(v1, v2) | |
True | |
>>> v1 = unit_vector(v0, axis=1) | |
>>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1) | |
>>> numpy.allclose(v1, v2) | |
True | |
>>> v1 = numpy.empty((5, 4, 3), dtype=numpy.float64) | |
>>> unit_vector(v0, axis=1, out=v1) | |
>>> numpy.allclose(v1, v2) | |
True | |
>>> list(unit_vector([])) | |
[] | |
>>> list(unit_vector([1.0])) | |
[1.0] | |
""" | |
if out is None: | |
data = numpy.array(data, dtype=numpy.float64, copy=True) | |
if data.ndim == 1: | |
data /= math.sqrt(numpy.dot(data, data)) | |
return data | |
else: | |
if out is not data: | |
out[:] = numpy.array(data, copy=False) | |
data = out | |
length = numpy.atleast_1d(numpy.sum(data*data, axis)) | |
numpy.sqrt(length, length) | |
if axis is not None: | |
length = numpy.expand_dims(length, axis) | |
data /= length | |
if out is None: | |
return data | |
def random_vector(size): | |
"""Return array of random doubles in the half-open interval [0.0, 1.0). | |
>>> v = random_vector(10000) | |
>>> numpy.all(v >= 0.0) and numpy.all(v < 1.0) | |
True | |
>>> v0 = random_vector(10) | |
>>> v1 = random_vector(10) | |
>>> numpy.any(v0 == v1) | |
False | |
""" | |
return numpy.random.random(size) | |
def inverse_matrix(matrix): | |
"""Return inverse of square transformation matrix. | |
>>> M0 = random_rotation_matrix() | |
>>> M1 = inverse_matrix(M0.T) | |
>>> numpy.allclose(M1, numpy.linalg.inv(M0.T)) | |
True | |
>>> for size in range(1, 7): | |
... M0 = numpy.random.rand(size, size) | |
... M1 = inverse_matrix(M0) | |
... if not numpy.allclose(M1, numpy.linalg.inv(M0)): print size | |
""" | |
return numpy.linalg.inv(matrix) | |
def concatenate_matrices(*matrices): | |
"""Return concatenation of series of transformation matrices. | |
>>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5 | |
>>> numpy.allclose(M, concatenate_matrices(M)) | |
True | |
>>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T)) | |
True | |
""" | |
M = numpy.identity(4) | |
for i in matrices: | |
M = numpy.dot(M, i) | |
return M | |
def is_same_transform(matrix0, matrix1): | |
"""Return True if two matrices perform same transformation. | |
>>> is_same_transform(numpy.identity(4), numpy.identity(4)) | |
True | |
>>> is_same_transform(numpy.identity(4), random_rotation_matrix()) | |
False | |
""" | |
matrix0 = numpy.array(matrix0, dtype=numpy.float64, copy=True) | |
matrix0 /= matrix0[3, 3] | |
matrix1 = numpy.array(matrix1, dtype=numpy.float64, copy=True) | |
matrix1 /= matrix1[3, 3] | |
return numpy.allclose(matrix0, matrix1) | |
def _import_module(module_name, warn=True, prefix='_py_', ignore='_'): | |
"""Try import all public attributes from module into global namespace. | |
Existing attributes with name clashes are renamed with prefix. | |
Attributes starting with underscore are ignored by default. | |
Return True on successful import. | |
""" | |
try: | |
module = __import__(module_name) | |
except ImportError: | |
if warn: | |
warnings.warn("Failed to import module " + module_name) | |
else: | |
for attr in dir(module): | |
if ignore and attr.startswith(ignore): | |
continue | |
if prefix: | |
if attr in globals(): | |
globals()[prefix + attr] = globals()[attr] | |
elif warn: | |
warnings.warn("No Python implementation of " + attr) | |
globals()[attr] = getattr(module, attr) | |
return True | |