from dotenv import load_dotenv import pathlib import asyncio import sys import os from pydantic_ai import Agent from openai import AsyncOpenAI, OpenAI from pydantic_ai.models.openai import OpenAIModel import mcp_client # Get the directory where the current script is located SCRIPT_DIR = pathlib.Path(__file__).parent.resolve() # Define the path to the config file relative to the script directory CONFIG_FILE = SCRIPT_DIR / "mcp_config.json" load_dotenv() def get_model(): llm = os.getenv('MODEL_CHOICE', 'gpt-4o-mini') base_url = os.getenv('BASE_URL', 'https://api.openai.com/v1') api_key = os.getenv('LLM_API_KEY', 'no-api-key-provided') return OpenAIModel( llm, base_url=base_url, api_key=api_key ) async def get_pydantic_ai_agent(): client = mcp_client.MCPClient() client.load_servers(str(CONFIG_FILE)) tools = await client.start() return client, Agent(model=get_model(), tools=tools) async def main(): client, agent = await get_pydantic_ai_agent() while True: # Example: Search the web to find the newest local LLMs. user_input = input("\n[You] ") # Check if user wants to exit if user_input.lower() in ['exit', 'quit', 'bye', 'goodbye']: print("Goodbye!") break result = await agent.run(user_input) print('[Assistant] ', result.data) if __name__ == '__main__': asyncio.run(main())