from pathlib import Path import cv2 from diffusers.utils import logging from huggingface_hub import hf_hub_download from PIL import Image from torch import nn try: from basicsr.archs.rrdbnet_arch import RRDBNet from realesrgan import RealESRGANer except ImportError as e: raise ImportError( "You tried to import realesrgan without having it installed properly. To install Real-ESRGAN, run:\n\n" "pip install realesrgan" ) logger = logging.get_logger(__name__) # pylint: disable=invalid-name class RealESRGANModel(nn.Module): def __init__(self, model_path, tile=0, tile_pad=10, pre_pad=0, fp32=False): super().__init__() try: from basicsr.archs.rrdbnet_arch import RRDBNet from realesrgan import RealESRGANer except ImportError as e: raise ImportError( "You tried to import realesrgan without having it installed properly. To install Real-ESRGAN, run:\n\n" "pip install realesrgan" ) model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) self.upsampler = RealESRGANer( scale=4, model_path=model_path, model=model, tile=tile, tile_pad=tile_pad, pre_pad=pre_pad, half=not fp32 ) def forward(self, image, outscale=4, convert_to_pil=True): """Upsample an image array or path. Args: image (Union[np.ndarray, str]): Either a np array or an image path. np array is assumed to be in RGB format, and we convert it to BGR. outscale (int, optional): Amount to upscale the image. Defaults to 4. convert_to_pil (bool, optional): If True, return PIL image. Otherwise, return numpy array (BGR). Defaults to True. Returns: Union[np.ndarray, PIL.Image.Image]: An upsampled version of the input image. """ if isinstance(image, (str, Path)): img = cv2.imread(image, cv2.IMREAD_UNCHANGED) else: img = image img = (img * 255).round().astype("uint8") img = img[:, :, ::-1] image, _ = self.upsampler.enhance(img, outscale=outscale) if convert_to_pil: image = Image.fromarray(image[:, :, ::-1]) return image @classmethod def from_pretrained(cls, model_name_or_path="nateraw/real-esrgan"): """Initialize a pretrained Real-ESRGAN upsampler. Example: ```python >>> from stable_diffusion_videos import PipelineRealESRGAN >>> pipe = PipelineRealESRGAN.from_pretrained('nateraw/real-esrgan') >>> im_out = pipe('input_img.jpg') ``` Args: model_name_or_path (str, optional): The Hugging Face repo ID or path to local model. Defaults to 'nateraw/real-esrgan'. Returns: stable_diffusion_videos.PipelineRealESRGAN: An instance of `PipelineRealESRGAN` instantiated from pretrained model. """ # reuploaded form official ones mentioned here: # https://github.com/xinntao/Real-ESRGAN if Path(model_name_or_path).exists(): file = model_name_or_path else: file = hf_hub_download(model_name_or_path, "RealESRGAN_x4plus.pth") return cls(file) def upsample_imagefolder(self, in_dir, out_dir, suffix="out", outfile_ext=".png", recursive=False, force=False): in_dir, out_dir = Path(in_dir), Path(out_dir) if not in_dir.exists(): raise FileNotFoundError(f"Provided input directory {in_dir} does not exist") out_dir.mkdir(exist_ok=True, parents=True) generator = in_dir.rglob("*") if recursive else in_dir.glob("*") image_paths = [x for x in generator if x.suffix.lower() in [".png", ".jpg", ".jpeg"]] n_img = len(image_paths) for i, image in enumerate(image_paths): out_filepath = out_dir / (str(image.relative_to(in_dir).with_suffix("")) + suffix + outfile_ext) if not force and out_filepath.exists(): logger.info( f"[{i}/{n_img}] {out_filepath} already exists, skipping. To avoid skipping, pass force=True." ) continue logger.info(f"[{i}/{n_img}] upscaling {image}") im = self(str(image)) out_filepath.parent.mkdir(parents=True, exist_ok=True) im.save(out_filepath)