import os import gradio as gr import torch from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler from PIL import Image from video_diffusion.inpaint_zoom.utils.zoom_out_utils import ( dummy, preprocess_image, preprocess_mask_image, write_video, ) os.environ["CUDA_VISIBLE_DEVICES"] = "0" stable_paint_model_list = [ "stabilityai/stable-diffusion-2-inpainting", "runwayml/stable-diffusion-inpainting", "SG161222/Realistic_Vision_V5.1_noVAE", "SimianLuo/LCM_Dreamshaper_v7" ] stable_paint_prompt_list = [ "children running in the forest , sunny, bright, by studio ghibli painting, superior quality, masterpiece, traditional Japanese colors, by Grzegorz Rutkowski, concept art", "A beautiful landscape of a mountain range with a lake in the foreground", ] stable_paint_negative_prompt_list = [ "lurry, bad art, blurred, text, watermark", ] class StableDiffusionZoomOut: def __init__(self): self.pipe = None def load_model(self, model_id): if self.pipe is None: self.pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16) self.pipe.set_use_memory_efficient_attention_xformers(True) self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(self.pipe.scheduler.config) self.pipe = self.pipe.to("cuda") self.pipe.safety_checker = dummy self.g_cuda = torch.Generator(device="cuda") return self.pipe def generate_video( self, model_id, prompt, negative_prompt, guidance_scale, num_inference_steps, num_frames, step_size, ): pipe = self.load_model(model_id) new_image = Image.new(mode="RGBA", size=(512, 512)) current_image, mask_image = preprocess_mask_image(new_image) current_image = pipe( prompt=[prompt], negative_prompt=[negative_prompt], image=current_image, mask_image=mask_image, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, ).images[0] all_frames = [] all_frames.append(current_image) for i in range(num_frames): prev_image = preprocess_image(current_image, step_size, 512) current_image = prev_image current_image, mask_image = preprocess_mask_image(current_image) current_image = pipe( prompt=[prompt], negative_prompt=[negative_prompt], image=current_image, mask_image=mask_image, num_inference_steps=num_inference_steps, ).images[0] current_image.paste(prev_image, mask=prev_image) all_frames.append(current_image) save_path = "output.mp4" write_video(save_path, all_frames, fps=30) return save_path def app(): with gr.Blocks(): with gr.Row(): with gr.Column(): text2image_out_model_path = gr.Dropdown( choices=stable_paint_model_list, value=stable_paint_model_list[0], label="Text-Image Model Id" ) text2image_out_prompt = gr.Textbox(lines=2, value=stable_paint_prompt_list[0], label="Prompt") text2image_out_negative_prompt = gr.Textbox( lines=1, value=stable_paint_negative_prompt_list[0], label="Negative Prompt" ) with gr.Row(): with gr.Column(): text2image_out_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label="Guidance Scale" ) text2image_out_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label="Num Inference Step" ) with gr.Row(): with gr.Column(): text2image_out_step_size = gr.Slider( minimum=1, maximum=100, step=1, value=10, label="Step Size" ) text2image_out_num_frames = gr.Slider( minimum=1, maximum=100, step=1, value=10, label="Frames" ) text2image_out_predict = gr.Button(value="Generator") with gr.Column(): output_image = gr.Video(label="Output") text2image_out_predict.click( fn=StableDiffusionZoomOut().generate_video, inputs=[ text2image_out_model_path, text2image_out_prompt, text2image_out_negative_prompt, text2image_out_guidance_scale, text2image_out_num_inference_step, text2image_out_step_size, text2image_out_num_frames, ], outputs=output_image, )