import colossalai import torch import torch.distributed as dist from colossalai.testing import spawn from opensora.acceleration.communications import gather_forward_split_backward, split_forward_gather_backward from opensora.acceleration.parallel_states import set_sequence_parallel_group from opensora.models.layers.blocks import ( Attention, MultiHeadCrossAttention, SeqParallelAttention, SeqParallelMultiHeadCrossAttention, ) def run_attention(rank, world_size): # create model torch.manual_seed(1024) set_sequence_parallel_group(dist.group.WORLD) seq_parallel_attention = SeqParallelAttention(dim=256, num_heads=4, qkv_bias=True, enable_flashattn=False).cuda() torch.manual_seed(1024) attention = Attention( dim=256, num_heads=4, qkv_bias=True, enable_flashattn=False, ).cuda() # create inputs torch.manual_seed(1024) x = torch.randn(4, 64, 256).cuda() seq_x = x.clone().detach() x.requires_grad = True x.retain_grad() seq_x.requires_grad = True seq_x.retain_grad() sub_seq_x = split_forward_gather_backward(seq_x, dist.group.WORLD, dim=1, grad_scale="down") # run model out = attention(x) sub_seq_out = seq_parallel_attention(sub_seq_x) seq_out = gather_forward_split_backward(sub_seq_out, dist.group.WORLD, dim=1, grad_scale="up") assert torch.allclose(seq_out, out, atol=1e-7), f"{seq_out}\nvs\n{out}" # run backward seq_out.mean().backward() out.mean().backward() # all reduce gradient for sp for p in seq_parallel_attention.parameters(): if p.grad is not None: dist.all_reduce(p.grad, group=dist.group.WORLD) p.grad.div_(world_size) # check grad for p1, p2 in zip(seq_parallel_attention.parameters(), attention.parameters()): assert torch.allclose(p1.grad, p2.grad, atol=1e-7), f"{p1.grad}\nvs\n{p2.grad}" # check input grad assert torch.allclose(x.grad, seq_x.grad, atol=1e-7), f"{x.grad}\nvs\n{seq_x.grad}" def run_cross_attention(rank, world_size): # create model torch.manual_seed(1024) set_sequence_parallel_group(dist.group.WORLD) seq_parallel_attention = SeqParallelMultiHeadCrossAttention( d_model=256, num_heads=4, ).cuda().to(torch.bfloat16) torch.manual_seed(1024) attention = MultiHeadCrossAttention( d_model=256, num_heads=4, ).cuda().to(torch.bfloat16) # make sure the weights are the same for p1, p2 in zip(seq_parallel_attention.parameters(), attention.parameters()): p1.data.copy_(p2.data) # create inputs torch.manual_seed(1024) x = torch.randn(4, 64, 256).cuda().to(torch.bfloat16) y = torch.randn(4, 32, 256).cuda().to(torch.bfloat16) mask = [2, 10, 8, 16] mask = None seq_x = x.clone().detach() seq_y = y.clone().detach() # set grad x.requires_grad = True x.retain_grad() seq_x.requires_grad = True seq_x.retain_grad() y.requires_grad = True y.retain_grad() seq_y.requires_grad = True seq_y.retain_grad() # split by sequence sub_seq_x = split_forward_gather_backward(seq_x, dist.group.WORLD, dim=1, grad_scale="down") # run model out = attention(x, y, mask) sub_seq_out = seq_parallel_attention(sub_seq_x, seq_y, mask) seq_out = gather_forward_split_backward(sub_seq_out, dist.group.WORLD, dim=1, grad_scale="up") assert torch.allclose(seq_out, out, rtol=1e-5, atol=1e-6), f"\n{seq_out}\nvs\n{out}" # run backward seq_out.mean().backward() out.mean().backward() # all reduce gradient for sp for name, p in seq_parallel_attention.named_parameters(): if p.grad is not None: dist.all_reduce(p.grad, group=dist.group.WORLD) p.grad.div_(world_size) else: print(f"grad of {name} is None") # # check grad for p1, p2 in zip(seq_parallel_attention.named_parameters(), attention.named_parameters()): assert torch.allclose(p1[1].grad, p2[1].grad, rtol=1e-3, atol=1e-4), f"\n{p1[0]}\nvs\n{p2[0]}:\n{p1[1].grad}\nvs\n{p2[1].grad}" # # check input grad assert torch.allclose(x.grad, seq_x.grad, atol=1e-7), f"{x.grad}\nvs\n{seq_x.grad}" assert torch.allclose(y.grad, seq_y.grad, atol=1e-7), f"{y.grad}\nvs\n{seq_y.grad}" def run_dist(rank, world_size, port): colossalai.launch({}, rank=rank, world_size=world_size, host="localhost", port=port) # run_attention(rank, world_size) run_cross_attention(rank, world_size) def test_seq_parallel_attention(): spawn(run_dist, nprocs=2) if __name__ == "__main__": test_seq_parallel_attention()