import numpy as np import torch import torch.distributed as dist import torch.nn as nn from einops import rearrange from timm.models.layers import DropPath from timm.models.vision_transformer import Mlp from opensora.acceleration.checkpoint import auto_grad_checkpoint from opensora.acceleration.communications import gather_forward_split_backward, split_forward_gather_backward from opensora.acceleration.parallel_states import get_sequence_parallel_group from opensora.models.layers.blocks import ( Attention, CaptionEmbedder, MultiHeadCrossAttention, PatchEmbed3D, SeqParallelAttention, SeqParallelMultiHeadCrossAttention, T2IFinalLayer, TimestepEmbedder, approx_gelu, get_1d_sincos_pos_embed, get_2d_sincos_pos_embed, get_layernorm, t2i_modulate, ) from opensora.registry import MODELS from opensora.utils.ckpt_utils import load_checkpoint class STDiTBlock(nn.Module): def __init__( self, hidden_size, num_heads, d_s=None, d_t=None, mlp_ratio=4.0, drop_path=0.0, enable_flashattn=False, enable_layernorm_kernel=False, enable_sequence_parallelism=False, ): super().__init__() self.hidden_size = hidden_size self.enable_flashattn = enable_flashattn self._enable_sequence_parallelism = enable_sequence_parallelism if enable_sequence_parallelism: self.attn_cls = SeqParallelAttention self.mha_cls = SeqParallelMultiHeadCrossAttention else: self.attn_cls = Attention self.mha_cls = MultiHeadCrossAttention self.norm1 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel) self.attn = self.attn_cls( hidden_size, num_heads=num_heads, qkv_bias=True, enable_flashattn=enable_flashattn, ) self.cross_attn = self.mha_cls(hidden_size, num_heads) self.norm2 = get_layernorm(hidden_size, eps=1e-6, affine=False, use_kernel=enable_layernorm_kernel) self.mlp = Mlp( in_features=hidden_size, hidden_features=int(hidden_size * mlp_ratio), act_layer=approx_gelu, drop=0 ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.scale_shift_table = nn.Parameter(torch.randn(6, hidden_size) / hidden_size**0.5) # temporal attention self.d_s = d_s self.d_t = d_t if self._enable_sequence_parallelism: sp_size = dist.get_world_size(get_sequence_parallel_group()) # make sure d_t is divisible by sp_size assert d_t % sp_size == 0 self.d_t = d_t // sp_size self.attn_temp = self.attn_cls( hidden_size, num_heads=num_heads, qkv_bias=True, enable_flashattn=self.enable_flashattn, ) def forward(self, x, y, t, mask=None, tpe=None): B, N, C = x.shape shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.scale_shift_table[None] + t.reshape(B, 6, -1) ).chunk(6, dim=1) x_m = t2i_modulate(self.norm1(x), shift_msa, scale_msa) # spatial branch x_s = rearrange(x_m, "B (T S) C -> (B T) S C", T=self.d_t, S=self.d_s) x_s = self.attn(x_s) x_s = rearrange(x_s, "(B T) S C -> B (T S) C", T=self.d_t, S=self.d_s) x = x + self.drop_path(gate_msa * x_s) # temporal branch x_t = rearrange(x, "B (T S) C -> (B S) T C", T=self.d_t, S=self.d_s) if tpe is not None: x_t = x_t + tpe x_t = self.attn_temp(x_t) x_t = rearrange(x_t, "(B S) T C -> B (T S) C", T=self.d_t, S=self.d_s) x = x + self.drop_path(gate_msa * x_t) # cross attn x = x + self.cross_attn(x, y, mask) # mlp x = x + self.drop_path(gate_mlp * self.mlp(t2i_modulate(self.norm2(x), shift_mlp, scale_mlp))) return x @MODELS.register_module() class STDiT(nn.Module): def __init__( self, input_size=(1, 32, 32), in_channels=4, patch_size=(1, 2, 2), hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4.0, class_dropout_prob=0.1, pred_sigma=True, drop_path=0.0, no_temporal_pos_emb=False, caption_channels=4096, model_max_length=120, dtype=torch.float32, space_scale=1.0, time_scale=1.0, freeze=None, enable_flashattn=False, enable_layernorm_kernel=False, enable_sequence_parallelism=False, ): super().__init__() self.pred_sigma = pred_sigma self.in_channels = in_channels self.out_channels = in_channels * 2 if pred_sigma else in_channels self.hidden_size = hidden_size self.patch_size = patch_size self.input_size = input_size num_patches = np.prod([input_size[i] // patch_size[i] for i in range(3)]) self.num_patches = num_patches self.num_temporal = input_size[0] // patch_size[0] self.num_spatial = num_patches // self.num_temporal self.num_heads = num_heads self.dtype = dtype self.no_temporal_pos_emb = no_temporal_pos_emb self.depth = depth self.mlp_ratio = mlp_ratio self.enable_flashattn = enable_flashattn self.enable_layernorm_kernel = enable_layernorm_kernel self.space_scale = space_scale self.time_scale = time_scale self.register_buffer("pos_embed", self.get_spatial_pos_embed()) self.register_buffer("pos_embed_temporal", self.get_temporal_pos_embed()) self.x_embedder = PatchEmbed3D(patch_size, in_channels, hidden_size) self.t_embedder = TimestepEmbedder(hidden_size) self.t_block = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True)) self.y_embedder = CaptionEmbedder( in_channels=caption_channels, hidden_size=hidden_size, uncond_prob=class_dropout_prob, act_layer=approx_gelu, token_num=model_max_length, ) drop_path = [x.item() for x in torch.linspace(0, drop_path, depth)] self.blocks = nn.ModuleList( [ STDiTBlock( self.hidden_size, self.num_heads, mlp_ratio=self.mlp_ratio, drop_path=drop_path[i], enable_flashattn=self.enable_flashattn, enable_layernorm_kernel=self.enable_layernorm_kernel, enable_sequence_parallelism=enable_sequence_parallelism, d_t=self.num_temporal, d_s=self.num_spatial, ) for i in range(self.depth) ] ) self.final_layer = T2IFinalLayer(hidden_size, np.prod(self.patch_size), self.out_channels) # init model self.initialize_weights() self.initialize_temporal() if freeze is not None: assert freeze in ["not_temporal", "text"] if freeze == "not_temporal": self.freeze_not_temporal() elif freeze == "text": self.freeze_text() # sequence parallel related configs self.enable_sequence_parallelism = enable_sequence_parallelism if enable_sequence_parallelism: self.sp_rank = dist.get_rank(get_sequence_parallel_group()) else: self.sp_rank = None def forward(self, x, timestep, y, mask=None): """ Forward pass of STDiT. Args: x (torch.Tensor): latent representation of video; of shape [B, C, T, H, W] timestep (torch.Tensor): diffusion time steps; of shape [B] y (torch.Tensor): representation of prompts; of shape [B, 1, N_token, C] mask (torch.Tensor): mask for selecting prompt tokens; of shape [B, N_token] Returns: x (torch.Tensor): output latent representation; of shape [B, C, T, H, W] """ x = x.to(self.dtype) timestep = timestep.to(self.dtype) y = y.to(self.dtype) # embedding x = self.x_embedder(x) # [B, N, C] x = rearrange(x, "B (T S) C -> B T S C", T=self.num_temporal, S=self.num_spatial) x = x + self.pos_embed x = rearrange(x, "B T S C -> B (T S) C") # shard over the sequence dim if sp is enabled if self.enable_sequence_parallelism: x = split_forward_gather_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="down") t = self.t_embedder(timestep, dtype=x.dtype) # [B, C] t0 = self.t_block(t) # [B, C] y = self.y_embedder(y, self.training) # [B, 1, N_token, C] if mask is not None: if mask.shape[0] != y.shape[0]: mask = mask.repeat(y.shape[0] // mask.shape[0], 1) mask = mask.squeeze(1).squeeze(1) y = y.squeeze(1).masked_select(mask.unsqueeze(-1) != 0).view(1, -1, x.shape[-1]) y_lens = mask.sum(dim=1).tolist() else: y_lens = [y.shape[2]] * y.shape[0] y = y.squeeze(1).view(1, -1, x.shape[-1]) # blocks for i, block in enumerate(self.blocks): if i == 0: if self.enable_sequence_parallelism: tpe = torch.chunk( self.pos_embed_temporal, dist.get_world_size(get_sequence_parallel_group()), dim=1 )[self.sp_rank].contiguous() else: tpe = self.pos_embed_temporal else: tpe = None x = auto_grad_checkpoint(block, x, y, t0, y_lens, tpe) if self.enable_sequence_parallelism: x = gather_forward_split_backward(x, get_sequence_parallel_group(), dim=1, grad_scale="up") # x.shape: [B, N, C] # final process x = self.final_layer(x, t) # [B, N, C=T_p * H_p * W_p * C_out] x = self.unpatchify(x) # [B, C_out, T, H, W] # cast to float32 for better accuracy x = x.to(torch.float32) return x def unpatchify(self, x): """ Args: x (torch.Tensor): of shape [B, N, C] Return: x (torch.Tensor): of shape [B, C_out, T, H, W] """ N_t, N_h, N_w = [self.input_size[i] // self.patch_size[i] for i in range(3)] T_p, H_p, W_p = self.patch_size x = rearrange( x, "B (N_t N_h N_w) (T_p H_p W_p C_out) -> B C_out (N_t T_p) (N_h H_p) (N_w W_p)", N_t=N_t, N_h=N_h, N_w=N_w, T_p=T_p, H_p=H_p, W_p=W_p, C_out=self.out_channels, ) return x def unpatchify_old(self, x): c = self.out_channels t, h, w = [self.input_size[i] // self.patch_size[i] for i in range(3)] pt, ph, pw = self.patch_size x = x.reshape(shape=(x.shape[0], t, h, w, pt, ph, pw, c)) x = rearrange(x, "n t h w r p q c -> n c t r h p w q") imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw)) return imgs def get_spatial_pos_embed(self, grid_size=None): if grid_size is None: grid_size = self.input_size[1:] pos_embed = get_2d_sincos_pos_embed( self.hidden_size, (grid_size[0] // self.patch_size[1], grid_size[1] // self.patch_size[2]), scale=self.space_scale, ) pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False) return pos_embed def get_temporal_pos_embed(self): pos_embed = get_1d_sincos_pos_embed( self.hidden_size, self.input_size[0] // self.patch_size[0], scale=self.time_scale, ) pos_embed = torch.from_numpy(pos_embed).float().unsqueeze(0).requires_grad_(False) return pos_embed def freeze_not_temporal(self): for n, p in self.named_parameters(): if "attn_temp" not in n: p.requires_grad = False def freeze_text(self): for n, p in self.named_parameters(): if "cross_attn" in n: p.requires_grad = False def initialize_temporal(self): for block in self.blocks: nn.init.constant_(block.attn_temp.proj.weight, 0) nn.init.constant_(block.attn_temp.proj.bias, 0) def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize patch_embed like nn.Linear (instead of nn.Conv2d): w = self.x_embedder.proj.weight.data nn.init.xavier_uniform_(w.view([w.shape[0], -1])) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) nn.init.normal_(self.t_block[1].weight, std=0.02) # Initialize caption embedding MLP: nn.init.normal_(self.y_embedder.y_proj.fc1.weight, std=0.02) nn.init.normal_(self.y_embedder.y_proj.fc2.weight, std=0.02) # Zero-out adaLN modulation layers in PixArt blocks: for block in self.blocks: nn.init.constant_(block.cross_attn.proj.weight, 0) nn.init.constant_(block.cross_attn.proj.bias, 0) # Zero-out output layers: nn.init.constant_(self.final_layer.linear.weight, 0) nn.init.constant_(self.final_layer.linear.bias, 0) @MODELS.register_module("STDiT-XL/2") def STDiT_XL_2(from_pretrained=None, **kwargs): model = STDiT(depth=28, hidden_size=1152, patch_size=(1, 2, 2), num_heads=16, **kwargs) if from_pretrained is not None: load_checkpoint(model, from_pretrained) return model