import random from typing import Iterator, Optional import numpy as np import torch from PIL import Image from torch.distributed import ProcessGroup from torch.distributed.distributed_c10d import _get_default_group from torch.utils.data import DataLoader, Dataset from torch.utils.data.distributed import DistributedSampler from torchvision.io import write_video from torchvision.utils import save_image def save_sample(x, fps=8, save_path=None, normalize=True, value_range=(-1, 1)): """ Args: x (Tensor): shape [C, T, H, W] """ assert x.ndim == 4 if x.shape[1] == 1: # T = 1: save as image save_path += ".png" x = x.squeeze(1) save_image([x], save_path, normalize=normalize, value_range=value_range) else: save_path += ".mp4" if normalize: low, high = value_range x.clamp_(min=low, max=high) x.sub_(low).div_(max(high - low, 1e-5)) x = x.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 3, 0).to("cpu", torch.uint8) write_video(save_path, x, fps=fps, video_codec="h264") print(f"Saved to {save_path}") class StatefulDistributedSampler(DistributedSampler): def __init__( self, dataset: Dataset, num_replicas: Optional[int] = None, rank: Optional[int] = None, shuffle: bool = True, seed: int = 0, drop_last: bool = False, ) -> None: super().__init__(dataset, num_replicas, rank, shuffle, seed, drop_last) self.start_index: int = 0 def __iter__(self) -> Iterator: iterator = super().__iter__() indices = list(iterator) indices = indices[self.start_index :] return iter(indices) def __len__(self) -> int: return self.num_samples - self.start_index def set_start_index(self, start_index: int) -> None: self.start_index = start_index def prepare_dataloader( dataset, batch_size, shuffle=False, seed=1024, drop_last=False, pin_memory=False, num_workers=0, process_group: Optional[ProcessGroup] = None, **kwargs, ): r""" Prepare a dataloader for distributed training. The dataloader will be wrapped by `torch.utils.data.DataLoader` and `StatefulDistributedSampler`. Args: dataset (`torch.utils.data.Dataset`): The dataset to be loaded. shuffle (bool, optional): Whether to shuffle the dataset. Defaults to False. seed (int, optional): Random worker seed for sampling, defaults to 1024. add_sampler: Whether to add ``DistributedDataParallelSampler`` to the dataset. Defaults to True. drop_last (bool, optional): Set to True to drop the last incomplete batch, if the dataset size is not divisible by the batch size. If False and the size of dataset is not divisible by the batch size, then the last batch will be smaller, defaults to False. pin_memory (bool, optional): Whether to pin memory address in CPU memory. Defaults to False. num_workers (int, optional): Number of worker threads for this dataloader. Defaults to 0. kwargs (dict): optional parameters for ``torch.utils.data.DataLoader``, more details could be found in `DataLoader `_. Returns: :class:`torch.utils.data.DataLoader`: A DataLoader used for training or testing. """ _kwargs = kwargs.copy() process_group = process_group or _get_default_group() sampler = StatefulDistributedSampler( dataset, num_replicas=process_group.size(), rank=process_group.rank(), shuffle=shuffle ) # Deterministic dataloader def seed_worker(worker_id): worker_seed = seed np.random.seed(worker_seed) torch.manual_seed(worker_seed) random.seed(worker_seed) return DataLoader( dataset, batch_size=batch_size, sampler=sampler, worker_init_fn=seed_worker, drop_last=drop_last, pin_memory=pin_memory, num_workers=num_workers, **_kwargs, ) def center_crop_arr(pil_image, image_size): """ Center cropping implementation from ADM. https://github.com/openai/guided-diffusion/blob/8fb3ad9197f16bbc40620447b2742e13458d2831/guided_diffusion/image_datasets.py#L126 """ while min(*pil_image.size) >= 2 * image_size: pil_image = pil_image.resize(tuple(x // 2 for x in pil_image.size), resample=Image.BOX) scale = image_size / min(*pil_image.size) pil_image = pil_image.resize(tuple(round(x * scale) for x in pil_image.size), resample=Image.BICUBIC) arr = np.array(pil_image) crop_y = (arr.shape[0] - image_size) // 2 crop_x = (arr.shape[1] - image_size) // 2 return Image.fromarray(arr[crop_y : crop_y + image_size, crop_x : crop_x + image_size])