from utils.image2image import stable_diffusion_img2img
from utils.text2image import stable_diffusion_text2img
from utils.inpaint import stable_diffusion_inpaint
from controlnet.controlnet_canny import stable_diffusion_controlnet_canny
from controlnet.controlnet_depth import stable_diffusion_controlnet_depth
from controlnet.controlnet_hed import stable_diffusion_controlnet_hed
from controlnet.controlnet_mlsd import stable_diffusion_controlnet_mlsd
from controlnet.controlnet_pose import stable_diffusion_controlnet_pose
from controlnet.controlnet_scribble import stable_diffusion_controlnet_scribble
from controlnet.controlnet_seg import stable_diffusion_controlnet_seg
import gradio as gr
stable_model_list = [
"runwayml/stable-diffusion-v1-5",
"stabilityai/stable-diffusion-2",
"stabilityai/stable-diffusion-2-base",
"stabilityai/stable-diffusion-2-1",
"stabilityai/stable-diffusion-2-1-base"
]
stable_inpiant_model_list = [
"stabilityai/stable-diffusion-2-inpainting",
"runwayml/stable-diffusion-inpainting"
]
stable_prompt_list = [
"a photo of a man.",
"a photo of a girl."
]
stable_negative_prompt_list = [
"bad, ugly",
"deformed"
]
app = gr.Blocks()
with app:
gr.Markdown("# **
Stable Diffusion + ControlNet WebUI**")
gr.Markdown(
"""
"""
)
with gr.Row():
with gr.Column():
with gr.Tab('Text2Image'):
text2image_model_id = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label='Text-Image Model Id'
)
text2image_prompt = gr.Textbox(
lines=1,
value=stable_prompt_list[0],
label='Prompt'
)
text2image_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label='Negative Prompt'
)
with gr.Accordion("Advanced Options", open=False):
text2image_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label='Guidance Scale'
)
text2image_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label='Num Inference Step'
)
text2image_height = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=512,
label='Tile Height'
)
text2image_width = gr.Slider(
minimum=128,
maximum=1280,
step=32,
value=768,
label='Tile Height'
)
text2image_predict = gr.Button(value='Generator')
with gr.Tab('Image2Image'):
image2image2_image_file = gr.Image(label='Image')
image2image_model_id = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label='Image-Image Model Id'
)
image2image_prompt = gr.Textbox(
lines=1,
value=stable_prompt_list[0],
label='Prompt'
)
image2image_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label='Negative Prompt'
)
with gr.Accordion("Advanced Options", open=False):
image2image_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label='Guidance Scale'
)
image2image_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label='Num Inference Step'
)
image2image_predict = gr.Button(value='Generator')
with gr.Tab('Inpaint'):
inpaint_image_file = gr.Image(
source="upload",
type="numpy",
tool="sketch",
elem_id="source_container"
)
inpaint_model_id = gr.Dropdown(
choices=stable_inpiant_model_list,
value=stable_inpiant_model_list[0],
label='Inpaint Model Id'
)
inpaint_prompt = gr.Textbox(
lines=1,
value=stable_prompt_list[0],
label='Prompt'
)
inpaint_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label='Negative Prompt'
)
with gr.Accordion("Advanced Options", open=False):
inpaint_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label='Guidance Scale'
)
inpaint_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label='Num Inference Step'
)
inpaint_predict = gr.Button(value='Generator')
with gr.Tab('ControlNet'):
with gr.Tab('Canny'):
controlnet_canny_image_file = gr.Image(label='Image')
controlnet_canny_model_id = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label='Stable Model Id'
)
controlnet_canny_prompt = gr.Textbox(
lines=1,
value=stable_prompt_list[0],
label='Prompt'
)
controlnet_canny_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label='Negative Prompt'
)
with gr.Accordion("Advanced Options", open=False):
controlnet_canny_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label='Guidance Scale'
)
controlnet_canny_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label='Num Inference Step'
)
controlnet_canny_predict = gr.Button(value='Generator')
with gr.Tab('Hed'):
controlnet_hed_image_file = gr.Image(label='Image')
controlnet_hed_model_id = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label='Stable Model Id'
)
controlnet_hed_prompt = gr.Textbox(
lines=1,
value=stable_prompt_list[0],
label='Prompt'
)
controlnet_hed_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label='Negative Prompt'
)
with gr.Accordion("Advanced Options", open=False):
controlnet_hed_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label='Guidance Scale'
)
controlnet_hed_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label='Num Inference Step'
)
controlnet_hed_predict = gr.Button(value='Generator')
with gr.Tab('MLSD line'):
controlnet_mlsd_image_file = gr.Image(label='Image')
controlnet_mlsd_model_id = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label='Stable Model Id'
)
controlnet_mlsd_prompt = gr.Textbox(
lines=1,
value=stable_prompt_list[0],
label='Prompt'
)
controlnet_mlsd_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label='Negative Prompt'
)
with gr.Accordion("Advanced Options", open=False):
controlnet_mlsd_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label='Guidance Scale'
)
controlnet_mlsd_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label='Num Inference Step'
)
controlnet_mlsd_predict = gr.Button(value='Generator')
with gr.Tab('Segmentation'):
controlnet_seg_image_file = gr.Image(label='Image')
controlnet_seg_model_id = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label='Stable Model Id'
)
controlnet_seg_prompt = gr.Textbox(
lines=1,
value=stable_prompt_list[0],
label='Prompt'
)
controlnet_seg_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label='Negative Prompt'
)
with gr.Accordion("Advanced Options", open=False):
controlnet_seg_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label='Guidance Scale'
)
controlnet_seg_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label='Num Inference Step'
)
controlnet_seg_predict = gr.Button(value='Generator')
with gr.Tab('Depth'):
controlnet_depth_image_file = gr.Image(label='Image')
controlnet_depth_model_id = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label='Stable Model Id'
)
controlnet_depth_prompt = gr.Textbox(
lines=1,
value=stable_prompt_list[0],
label='Prompt'
)
controlnet_depth_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label='Negative Prompt'
)
with gr.Accordion("Advanced Options", open=False):
controlnet_depth_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label='Guidance Scale'
)
controlnet_depth_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label='Num Inference Step'
)
controlnet_depth_predict = gr.Button(value='Generator')
with gr.Tab('Scribble'):
controlnet_scribble_image_file = gr.Image(label='Image')
controlnet_scribble_model_id = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label='Stable Model Id'
)
controlnet_scribble_prompt = gr.Textbox(
lines=1,
value=stable_prompt_list[0],
label='Prompt'
)
controlnet_scribble_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label='Negative Prompt'
)
with gr.Accordion("Advanced Options", open=False):
controlnet_scribble_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label='Guidance Scale'
)
controlnet_scribble_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label='Num Inference Step'
)
controlnet_scribble_predict = gr.Button(value='Generator')
with gr.Tab('Pose'):
controlnet_pose_image_file = gr.Image(label='Image')
controlnet_pose_model_id = gr.Dropdown(
choices=stable_model_list,
value=stable_model_list[0],
label='Stable Model Id'
)
controlnet_pose_prompt = gr.Textbox(
lines=1,
value=stable_prompt_list[0],
label='Prompt'
)
controlnet_pose_negative_prompt = gr.Textbox(
lines=1,
value=stable_negative_prompt_list[0],
label='Negative Prompt'
)
with gr.Accordion("Advanced Options", open=False):
controlnet_pose_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label='Guidance Scale'
)
controlnet_pose_num_inference_step = gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label='Num Inference Step'
)
controlnet_pose_predict = gr.Button(value='Generator')
with gr.Tab('Generator'):
with gr.Column():
output_image = gr.Image(label='Image')
text2image_predict.click(
fn = stable_diffusion_text2img,
inputs = [
text2image_model_id,
text2image_prompt,
text2image_negative_prompt,
text2image_guidance_scale,
text2image_num_inference_step,
text2image_height,
text2image_width,
],
outputs = [output_image],
)
image2image_predict.click(
fn = stable_diffusion_img2img,
inputs = [
image2image2_image_file,
image2image_model_id,
image2image_prompt,
image2image_negative_prompt,
image2image_guidance_scale,
image2image_num_inference_step,
],
outputs = [output_image],
)
inpaint_predict.click(
fn = stable_diffusion_inpaint,
inputs = [
inpaint_image_file,
inpaint_model_id,
inpaint_prompt,
inpaint_negative_prompt,
inpaint_guidance_scale,
inpaint_num_inference_step,
],
outputs = [output_image],
)
controlnet_canny_predict.click(
fn = stable_diffusion_controlnet_canny,
inputs = [
controlnet_canny_image_file,
controlnet_canny_model_id,
controlnet_canny_prompt,
controlnet_canny_negative_prompt,
controlnet_canny_guidance_scale,
controlnet_canny_num_inference_step,
],
outputs = [output_image],
)
controlnet_hed_predict.click(
fn = stable_diffusion_controlnet_hed,
inputs = [
controlnet_hed_image_file,
controlnet_hed_model_id,
controlnet_hed_prompt,
controlnet_hed_negative_prompt,
controlnet_hed_guidance_scale,
controlnet_hed_num_inference_step,
],
outputs = [output_image],
)
controlnet_mlsd_predict.click(
fn = stable_diffusion_controlnet_mlsd,
inputs = [
controlnet_mlsd_image_file,
controlnet_mlsd_model_id,
controlnet_mlsd_prompt,
controlnet_mlsd_negative_prompt,
controlnet_mlsd_guidance_scale,
controlnet_mlsd_num_inference_step,
],
outputs = [output_image],
)
controlnet_seg_predict.click(
fn = stable_diffusion_controlnet_seg,
inputs = [
controlnet_seg_image_file,
controlnet_seg_model_id,
controlnet_seg_prompt,
controlnet_seg_negative_prompt,
controlnet_seg_guidance_scale,
controlnet_seg_num_inference_step,
],
outputs = [output_image],
)
controlnet_depth_predict.click(
fn = stable_diffusion_controlnet_depth,
inputs = [
controlnet_depth_image_file,
controlnet_depth_model_id,
controlnet_depth_prompt,
controlnet_depth_negative_prompt,
controlnet_depth_guidance_scale,
controlnet_depth_num_inference_step,
],
outputs = [output_image],
)
controlnet_scribble_predict.click(
fn = stable_diffusion_controlnet_scribble,
inputs = [
controlnet_scribble_image_file,
controlnet_scribble_model_id,
controlnet_scribble_prompt,
controlnet_scribble_negative_prompt,
controlnet_scribble_guidance_scale,
controlnet_scribble_num_inference_step,
],
outputs = [output_image],
)
controlnet_pose_predict.click(
fn = stable_diffusion_controlnet_pose,
inputs = [
controlnet_pose_image_file,
controlnet_pose_model_id,
controlnet_pose_prompt,
controlnet_pose_negative_prompt,
controlnet_pose_guidance_scale,
controlnet_pose_num_inference_step,
],
outputs = [output_image],
)
app.launch()