from utils.image2image import stable_diffusion_img2img from utils.text2image import stable_diffusion_text2img from utils.inpaint import stable_diffusion_inpaint from controlnet.controlnet_canny import stable_diffusion_controlnet_canny from controlnet.controlnet_depth import stable_diffusion_controlnet_depth from controlnet.controlnet_hed import stable_diffusion_controlnet_hed from controlnet.controlnet_mlsd import stable_diffusion_controlnet_mlsd from controlnet.controlnet_pose import stable_diffusion_controlnet_pose from controlnet.controlnet_scribble import stable_diffusion_controlnet_scribble from controlnet.controlnet_seg import stable_diffusion_controlnet_seg import gradio as gr stable_model_list = [ "runwayml/stable-diffusion-v1-5", "stabilityai/stable-diffusion-2", "stabilityai/stable-diffusion-2-base", "stabilityai/stable-diffusion-2-1", "stabilityai/stable-diffusion-2-1-base" ] stable_inpiant_model_list = [ "stabilityai/stable-diffusion-2-inpainting", "runwayml/stable-diffusion-inpainting" ] stable_prompt_list = [ "a photo of a man.", "a photo of a girl." ] stable_negative_prompt_list = [ "bad, ugly", "deformed" ] app = gr.Blocks() with app: gr.Markdown("# **

Stable Diffusion WebUI

**") gr.Markdown( """

Follow me for more! Twitter | Github | Linkedin
""" ) with gr.Row(): with gr.Column(): with gr.Tab('Text2Image'): text2image_model_id = gr.Dropdown( choices=stable_model_list, value=stable_model_list[0], label='Text-Image Model Id' ) text2image_prompt = gr.Textbox( lines=1, value=stable_prompt_list[0], label='Prompt' ) text2image_negative_prompt = gr.Textbox( lines=1, value=stable_negative_prompt_list[0], label='Negative Prompt' ) with gr.Accordion("Advanced Options", open=False): text2image_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label='Guidance Scale' ) text2image_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label='Num Inference Step' ) text2image_height = gr.Slider( minimum=128, maximum=1280, step=32, value=512, label='Tile Height' ) text2image_width = gr.Slider( minimum=128, maximum=1280, step=32, value=768, label='Tile Height' ) text2image_predict = gr.Button(value='Generator') with gr.Tab('Image2Image'): image2image2_image_file = gr.Image(label='Image') image2image_model_id = gr.Dropdown( choices=stable_model_list, value=stable_model_list[0], label='Image-Image Model Id' ) image2image_prompt = gr.Textbox( lines=1, value=stable_prompt_list[0], label='Prompt' ) image2image_negative_prompt = gr.Textbox( lines=1, value=stable_negative_prompt_list[0], label='Negative Prompt' ) with gr.Accordion("Advanced Options", open=False): image2image_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label='Guidance Scale' ) image2image_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label='Num Inference Step' ) image2image_predict = gr.Button(value='Generator') with gr.Tab('Inpaint'): inpaint_image_file = gr.Image( source="upload", type="numpy", tool="sketch", elem_id="source_container" ) inpaint_model_id = gr.Dropdown( choices=stable_inpiant_model_list, value=stable_inpiant_model_list[0], label='Inpaint Model Id' ) inpaint_prompt = gr.Textbox( lines=1, value=stable_prompt_list[0], label='Prompt' ) inpaint_negative_prompt = gr.Textbox( lines=1, value=stable_negative_prompt_list[0], label='Negative Prompt' ) with gr.Accordion("Advanced Options", open=False): inpaint_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label='Guidance Scale' ) inpaint_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label='Num Inference Step' ) inpaint_predict = gr.Button(value='Generator') with gr.Tab('ControlNet'): with gr.Tab('Canny'): controlnet_canny_image_file = gr.Image(label='Image') controlnet_canny_model_id = gr.Dropdown( choices=stable_model_list, value=stable_model_list[0], label='Stable Model Id' ) controlnet_canny_prompt = gr.Textbox( lines=1, value=stable_prompt_list[0], label='Prompt' ) controlnet_canny_negative_prompt = gr.Textbox( lines=1, value=stable_negative_prompt_list[0], label='Negative Prompt' ) with gr.Accordion("Advanced Options", open=False): controlnet_canny_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label='Guidance Scale' ) controlnet_canny_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label='Num Inference Step' ) controlnet_canny_predict = gr.Button(value='Generator') with gr.Tab('Hed'): controlnet_hed_image_file = gr.Image(label='Image') controlnet_hed_model_id = gr.Dropdown( choices=stable_model_list, value=stable_model_list[0], label='Stable Model Id' ) controlnet_hed_prompt = gr.Textbox( lines=1, value=stable_prompt_list[0], label='Prompt' ) controlnet_hed_negative_prompt = gr.Textbox( lines=1, value=stable_negative_prompt_list[0], label='Negative Prompt' ) with gr.Accordion("Advanced Options", open=False): controlnet_hed_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label='Guidance Scale' ) controlnet_hed_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label='Num Inference Step' ) controlnet_hed_predict = gr.Button(value='Generator') with gr.Tab('MLSD line'): controlnet_mlsd_image_file = gr.Image(label='Image') controlnet_mlsd_model_id = gr.Dropdown( choices=stable_model_list, value=stable_model_list[0], label='Stable Model Id' ) controlnet_mlsd_prompt = gr.Textbox( lines=1, value=stable_prompt_list[0], label='Prompt' ) controlnet_mlsd_negative_prompt = gr.Textbox( lines=1, value=stable_negative_prompt_list[0], label='Negative Prompt' ) with gr.Accordion("Advanced Options", open=False): controlnet_mlsd_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label='Guidance Scale' ) controlnet_mlsd_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label='Num Inference Step' ) controlnet_mlsd_predict = gr.Button(value='Generator') with gr.Tab('Segmentation'): controlnet_seg_image_file = gr.Image(label='Image') controlnet_seg_model_id = gr.Dropdown( choices=stable_model_list, value=stable_model_list[0], label='Stable Model Id' ) controlnet_seg_prompt = gr.Textbox( lines=1, value=stable_prompt_list[0], label='Prompt' ) controlnet_seg_negative_prompt = gr.Textbox( lines=1, value=stable_negative_prompt_list[0], label='Negative Prompt' ) with gr.Accordion("Advanced Options", open=False): controlnet_seg_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label='Guidance Scale' ) controlnet_seg_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label='Num Inference Step' ) controlnet_seg_predict = gr.Button(value='Generator') with gr.Tab('Depth'): controlnet_depth_image_file = gr.Image(label='Image') controlnet_depth_model_id = gr.Dropdown( choices=stable_model_list, value=stable_model_list[0], label='Stable Model Id' ) controlnet_depth_prompt = gr.Textbox( lines=1, value=stable_prompt_list[0], label='Prompt' ) controlnet_depth_negative_prompt = gr.Textbox( lines=1, value=stable_negative_prompt_list[0], label='Negative Prompt' ) with gr.Accordion("Advanced Options", open=False): controlnet_depth_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label='Guidance Scale' ) controlnet_depth_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label='Num Inference Step' ) controlnet_depth_predict = gr.Button(value='Generator') with gr.Tab('Scribble'): controlnet_scribble_image_file = gr.Image(label='Image') controlnet_scribble_model_id = gr.Dropdown( choices=stable_model_list, value=stable_model_list[0], label='Stable Model Id' ) controlnet_scribble_prompt = gr.Textbox( lines=1, value=stable_prompt_list[0], label='Prompt' ) controlnet_scribble_negative_prompt = gr.Textbox( lines=1, value=stable_negative_prompt_list[0], label='Negative Prompt' ) with gr.Accordion("Advanced Options", open=False): controlnet_scribble_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label='Guidance Scale' ) controlnet_scribble_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label='Num Inference Step' ) controlnet_scribble_predict = gr.Button(value='Generator') with gr.Tab('Pose'): controlnet_pose_image_file = gr.Image(label='Image') controlnet_pose_model_id = gr.Dropdown( choices=stable_model_list, value=stable_model_list[0], label='Stable Model Id' ) controlnet_pose_prompt = gr.Textbox( lines=1, value=stable_prompt_list[0], label='Prompt' ) controlnet_pose_negative_prompt = gr.Textbox( lines=1, value=stable_negative_prompt_list[0], label='Negative Prompt' ) with gr.Accordion("Advanced Options", open=False): controlnet_pose_guidance_scale = gr.Slider( minimum=0.1, maximum=15, step=0.1, value=7.5, label='Guidance Scale' ) controlnet_pose_num_inference_step = gr.Slider( minimum=1, maximum=100, step=1, value=50, label='Num Inference Step' ) controlnet_pose_predict = gr.Button(value='Generator') with gr.Tab('Generator'): with gr.Column(): output_image = gr.Image(label='Image') text2image_predict.click( fn = stable_diffusion_text2img, inputs = [ text2image_model_id, text2image_prompt, text2image_negative_prompt, text2image_guidance_scale, text2image_num_inference_step, text2image_height, text2image_width, ], outputs = [output_image], ) image2image_predict.click( fn = stable_diffusion_img2img, inputs = [ image2image2_image_file, image2image_model_id, image2image_prompt, image2image_negative_prompt, image2image_guidance_scale, image2image_num_inference_step, ], outputs = [output_image], ) inpaint_predict.click( fn = stable_diffusion_inpaint, inputs = [ inpaint_image_file, inpaint_model_id, inpaint_prompt, inpaint_negative_prompt, inpaint_guidance_scale, inpaint_num_inference_step, ], outputs = [output_image], ) controlnet_canny_predict.click( fn = stable_diffusion_controlnet_canny, inputs = [ controlnet_canny_image_file, controlnet_canny_model_id, controlnet_canny_prompt, controlnet_canny_negative_prompt, controlnet_canny_guidance_scale, controlnet_canny_num_inference_step, ], outputs = [output_image], ) controlnet_hed_predict.click( fn = stable_diffusion_controlnet_hed, inputs = [ controlnet_hed_image_file, controlnet_hed_model_id, controlnet_hed_prompt, controlnet_hed_negative_prompt, controlnet_hed_guidance_scale, controlnet_hed_num_inference_step, ], outputs = [output_image], ) controlnet_mlsd_predict.click( fn = stable_diffusion_controlnet_mlsd, inputs = [ controlnet_mlsd_image_file, controlnet_mlsd_model_id, controlnet_mlsd_prompt, controlnet_mlsd_negative_prompt, controlnet_mlsd_guidance_scale, controlnet_mlsd_num_inference_step, ], outputs = [output_image], ) controlnet_seg_predict.click( fn = stable_diffusion_controlnet_seg, inputs = [ controlnet_seg_image_file, controlnet_seg_model_id, controlnet_seg_prompt, controlnet_seg_negative_prompt, controlnet_seg_guidance_scale, controlnet_seg_num_inference_step, ], outputs = [output_image], ) controlnet_depth_predict.click( fn = stable_diffusion_controlnet_depth, inputs = [ controlnet_depth_image_file, controlnet_depth_model_id, controlnet_depth_prompt, controlnet_depth_negative_prompt, controlnet_depth_guidance_scale, controlnet_depth_num_inference_step, ], outputs = [output_image], ) controlnet_scribble_predict.click( fn = stable_diffusion_controlnet_scribble, inputs = [ controlnet_scribble_image_file, controlnet_scribble_model_id, controlnet_scribble_prompt, controlnet_scribble_negative_prompt, controlnet_scribble_guidance_scale, controlnet_scribble_num_inference_step, ], outputs = [output_image], ) controlnet_pose_predict.click( fn = stable_diffusion_controlnet_pose, inputs = [ controlnet_pose_image_file, controlnet_pose_model_id, controlnet_pose_prompt, controlnet_pose_negative_prompt, controlnet_pose_guidance_scale, controlnet_pose_num_inference_step, ], outputs = [output_image], ) app.launch()