from functools import partial, reduce
import json
import os
import re
from datasets import load_dataset
import gradio as gr
from huggingface_hub import hf_hub_download
from huggingface_hub.repocard import metadata_load
import pandas as pd
from tqdm.autonotebook import tqdm
from utils.model_size import get_model_parameters_memory
from envs import LEADERBOARD_CONFIG, MODEL_META, REPO_ID, RESULTS_REPO, API
TASKS_CONFIG = LEADERBOARD_CONFIG["tasks"]
BOARDS_CONFIG = LEADERBOARD_CONFIG["boards"]
TASKS = list(TASKS_CONFIG.keys())
PRETTY_NAMES = {
"InstructionRetrieval": "Retrieval w/Instructions",
"PairClassification": "Pair Classification",
"BitextMining": "Bitext Mining",
}
TASK_TO_METRIC = {k:v["metric"] for k,v in TASKS_CONFIG.items()}
def make_clickable_model(model_name, link=None):
if link is None:
link = "https://huggingface.co/" + model_name
# Remove user from model name
return (
f'{model_name.split("/")[-1]}'
)
EXTERNAL_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_external", False)}
EXTERNAL_MODEL_TO_LINK = {k: v["link"] for k,v in MODEL_META["model_meta"].items() if v.get("link", False)}
EXTERNAL_MODEL_TO_DIM = {k: v["dim"] for k,v in MODEL_META["model_meta"].items() if v.get("dim", False)}
EXTERNAL_MODEL_TO_SEQLEN = {k: v["seq_len"] for k,v in MODEL_META["model_meta"].items() if v.get("seq_len", False)}
EXTERNAL_MODEL_TO_SIZE = {k: v["size"] for k,v in MODEL_META["model_meta"].items() if v.get("size", False)}
PROPRIETARY_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_proprietary", False)}
TASK_DESCRIPTIONS = {k: v["task_description"] for k,v in TASKS_CONFIG.items()}
TASK_DESCRIPTIONS["Overall"] = "Overall performance across MTEB tasks."
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {k for k,v in MODEL_META["model_meta"].items() if v.get("is_sentence_transformers_compatible", False)}
MODELS_TO_SKIP = MODEL_META["models_to_skip"]
CROSS_ENCODERS = MODEL_META["cross_encoders"]
BI_ENCODERS = [k for k, _ in MODEL_META["model_meta"].items() if k not in CROSS_ENCODERS + ["bm25"]]
PROPRIETARY_MODELS = {
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
for model in PROPRIETARY_MODELS
}
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS = {
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
for model in SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS
}
CROSS_ENCODERS = {
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
for model in CROSS_ENCODERS
}
BI_ENCODERS = {
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))
for model in BI_ENCODERS
}
TASK_TO_TASK_TYPE = {task_category: [] for task_category in TASKS}
for board_config in BOARDS_CONFIG.values():
for task_category, task_list in board_config["tasks"].items():
TASK_TO_TASK_TYPE[task_category].extend(task_list)
def add_lang(examples):
if not(examples["eval_language"]):
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"]
else:
examples["mteb_dataset_name_with_lang"] = examples["mteb_dataset_name"] + f' ({examples["eval_language"]})'
return examples
def norm(names): return set([name.split(" ")[0] for name in names])
def add_task(examples):
# Could be added to the dataset loading script instead
task_name = examples["mteb_dataset_name"]
task_type = None
for task_category, task_list in TASK_TO_TASK_TYPE.items():
if task_name in norm(task_list):
task_type = task_category
break
if task_type is not None:
examples["mteb_task"] = task_type
else:
print("WARNING: Task not found for dataset", examples["mteb_dataset_name"])
examples["mteb_task"] = "Unknown"
return examples
if os.path.exists("EXTERNAL_MODEL_RESULTS.json"):
with open("EXTERNAL_MODEL_RESULTS.json") as f:
EXTERNAL_MODEL_RESULTS = json.load(f)
# Update with models not contained
models_to_run = []
for model in EXTERNAL_MODELS:
if model not in EXTERNAL_MODEL_RESULTS:
models_to_run.append(model)
EXTERNAL_MODEL_RESULTS[model] = {k: {v: []} for k, v in TASK_TO_METRIC.items()}
else:
EXTERNAL_MODEL_RESULTS = {model: {k: {v: []} for k, v in TASK_TO_METRIC.items()} for model in EXTERNAL_MODELS}
models_to_run = EXTERNAL_MODELS
pbar = tqdm(models_to_run, desc="Fetching external model results")
for model in pbar:
pbar.set_description(f"Fetching external model results for {model!r}")
ds = load_dataset(RESULTS_REPO, model, trust_remote_code=True)
# For local debugging:
#, download_mode='force_redownload', verification_mode="no_checks")
ds = ds.map(add_lang)
ds = ds.map(add_task)
base_dict = {"Model": make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, f"https://huggingface.co/spaces/{REPO_ID}"))}
# For now only one metric per task - Could add more metrics lateron
for task, metric in TASK_TO_METRIC.items():
ds_dict = ds.filter(lambda x: (x["mteb_task"] == task) and (x["metric"] == metric))["test"].to_dict()
ds_dict = {k: round(v, 2) for k, v in zip(ds_dict["mteb_dataset_name_with_lang"], ds_dict["score"])}
EXTERNAL_MODEL_RESULTS[model][task][metric].append({**base_dict, **ds_dict})
# Save & cache EXTERNAL_MODEL_RESULTS
with open("EXTERNAL_MODEL_RESULTS.json", "w") as f:
json.dump(EXTERNAL_MODEL_RESULTS, f)
def get_dim_seq_size(model):
filenames = [sib.rfilename for sib in model.siblings]
dim, seq = "", ""
for filename in filenames:
if re.match("\d+_Pooling/config.json", filename):
st_config_path = hf_hub_download(model.modelId, filename=filename)
dim = json.load(open(st_config_path)).get("word_embedding_dimension", "")
break
for filename in filenames:
if re.match("\d+_Dense/config.json", filename):
st_config_path = hf_hub_download(model.modelId, filename=filename)
dim = json.load(open(st_config_path)).get("out_features", dim)
if "config.json" in filenames:
config_path = hf_hub_download(model.modelId, filename="config.json")
config = json.load(open(config_path))
if not dim:
dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", "")))
seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", ""))))
# Get model file size without downloading. Parameters in million parameters and memory in GB
parameters, memory = get_model_parameters_memory(model)
return dim, seq, parameters, memory
def make_datasets_clickable(df):
"""Does not work"""
if "BornholmBitextMining" in df.columns:
link = "https://huggingface.co/datasets/strombergnlp/bornholmsk_parallel"
df = df.rename(
columns={f'BornholmBitextMining': 'BornholmBitextMining',})
return df
def add_rank(df):
cols_to_rank = [col for col in df.columns if col not in ["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens"]]
if len(cols_to_rank) == 1:
df.sort_values(cols_to_rank[0], ascending=False, inplace=True)
else:
ranking = df[cols_to_rank].rank(
ascending=False,
axis=0,
method="average",
na_option="keep",
pct=True
)
mtr = ranking.mean(axis=1, skipna=False)
insert_at = len(df.columns) - len(cols_to_rank)
df.insert(insert_at, "MTR%", mtr)
df.insert(
insert_at+1,
"Average",
df[cols_to_rank].mean(axis=1, skipna=False)
)
df.sort_values("MTR%", ascending=True, inplace=True)
df.insert(0, "Rank", list(range(1, len(df) + 1)))
df = df.round(2)
# Fill NaN after averaging
df.fillna("", inplace=True)
return df
model_infos_path = "model_infos.json"
MODEL_INFOS = {}
if os.path.exists(model_infos_path):
with open(model_infos_path) as f:
MODEL_INFOS = json.load(f)
def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_emb_dim=True, task_to_metric=TASK_TO_METRIC, rank=True, refresh=True):
global MODEL_INFOS
api = API
models = api.list_models(filter="mteb")
# Initialize list to models that we cannot fetch metadata from
df_list = []
for model in EXTERNAL_MODEL_RESULTS:
results_list = []
for task in tasks:
# Not all models have InstructionRetrieval, other new tasks
if task not in EXTERNAL_MODEL_RESULTS[model]:
continue
results_list += EXTERNAL_MODEL_RESULTS[model][task][task_to_metric[task]]
if len(datasets) > 0:
res = {k: v for d in results_list for k, v in d.items() if (k == "Model") or any([x in k for x in datasets])}
elif langs:
# Would be cleaner to rely on an extra language column instead
langs_format = [f"({lang})" for lang in langs]
res = {k: v for d in results_list for k, v in d.items() if any([k.split(" ")[-1] in (k, x) for x in langs_format])}
else:
res = {k: v for d in results_list for k, v in d.items()}
# Model & at least one result
if len(res) > 1:
if add_emb_dim:
res["Model Size (Million Parameters)"] = EXTERNAL_MODEL_TO_SIZE.get(model, "")
res["Memory Usage (GB, fp32)"] = round(res["Model Size (Million Parameters)"] * 1e6 * 4 / 1024**3, 2) if res["Model Size (Million Parameters)"] != "" else ""
res["Embedding Dimensions"] = EXTERNAL_MODEL_TO_DIM.get(model, "")
res["Max Tokens"] = EXTERNAL_MODEL_TO_SEQLEN.get(model, "")
df_list.append(res)
for model in models:
if model.modelId in MODELS_TO_SKIP: continue
print("MODEL", model.modelId)
if model.modelId not in MODEL_INFOS or refresh:
readme_path = hf_hub_download(model.modelId, filename="README.md")
meta = metadata_load(readme_path)
MODEL_INFOS[model.modelId] = {
"metadata": meta
}
meta = MODEL_INFOS[model.modelId]["metadata"]
if "model-index" not in meta:
continue
# meta['model-index'][0]["results"] is list of elements like:
# {
# "task": {"type": "Classification"},
# "dataset": {
# "type": "mteb/amazon_massive_intent",
# "name": "MTEB MassiveIntentClassification (nb)",
# "config": "nb",
# "split": "test",
# },
# "metrics": [
# {"type": "accuracy", "value": 39.81506388702084},
# {"type": "f1", "value": 38.809586587791664},
# ],
# },
# Use "get" instead of dict indexing to skip incompat metadata instead of erroring out
if len(datasets) > 0:
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and any([x in sub_res.get("dataset", {}).get("name", "") for x in datasets])]
elif langs:
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks) and (sub_res.get("dataset", {}).get("config", "default") in ("default", *langs))]
else:
task_results = [sub_res for sub_res in meta["model-index"][0]["results"] if (sub_res.get("task", {}).get("type", "") in tasks)]
out = [{res["dataset"]["name"].replace("MTEB ", ""): [round(score["value"], 2) for score in res["metrics"] if score["type"] == task_to_metric.get(res["task"]["type"])][0]} for res in task_results]
out = {k: v for d in out for k, v in d.items()}
out["Model"] = make_clickable_model(model.modelId)
# Model & at least one result
if len(out) > 1:
if add_emb_dim:
try:
# Fails on gated repos, so we only include scores for them
if "dim_seq_size" not in MODEL_INFOS[model.modelId] or refresh:
MODEL_INFOS[model.modelId]["dim_seq_size"] = list(get_dim_seq_size(model))
out["Embedding Dimensions"], out["Max Tokens"], out["Model Size (Million Parameters)"], out["Memory Usage (GB, fp32)"] = tuple(MODEL_INFOS[model.modelId]["dim_seq_size"])
except:
MODEL_INFOS[model.modelId]["dim_seq_size"] = "", "", "", ""
df_list.append(out)
if model.library_name == "sentence-transformers" or "sentence-transformers" in model.tags or "modules.json" in {file.rfilename for file in model.siblings}:
SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS.add(out["Model"])
# Save & cache MODEL_INFOS
with open("model_infos.json", "w") as f:
json.dump(MODEL_INFOS, f)
df = pd.DataFrame(df_list)
# If there are any models that are the same, merge them
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
df = df.groupby("Model", as_index=False).first()
# Put 'Model' column first
cols = sorted(list(df.columns))
base_columns = ["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)", "Embedding Dimensions", "Max Tokens"]
if len(datasets) > 0:
#filter invalid columns
cols = [col for col in cols if col in base_columns + datasets]
i = 0
for column in base_columns:
if column in cols:
cols.insert(i, cols.pop(cols.index(column)))
i += 1
df = df[cols]
if rank:
df = add_rank(df)
if fillna:
df.fillna("", inplace=True)
return df
# Get dict with a task list for each task category
# E.g. {"Classification": ["AmazonMassiveIntentClassification (en)", ...], "PairClassification": ["SprintDuplicateQuestions", ...]}
def get_mteb_average(task_dict: dict, refresh=True):
all_tasks = reduce(lambda x, y: x + y, task_dict.values())
DATA_OVERALL = get_mteb_data(
tasks=list(task_dict.keys()),
datasets=all_tasks,
fillna=False,
add_emb_dim=True,
rank=False,
refresh=refresh
)
# Debugging:
# DATA_OVERALL.to_csv("overall.csv")
#
# Compute overall MTR
#
mtr_column = f"MTR% ({len(all_tasks)} datasets)"
task_ranks = DATA_OVERALL[all_tasks].rank(
ascending=False, axis=0, method="average", na_option="keep", pct=True
)
mean_task_rank = task_ranks.mean(axis=1, skipna=False)
DATA_OVERALL.insert(1, mtr_column, mean_task_rank)
DATA_OVERALL.insert(2, f"Average ({len(all_tasks)} datasets)", DATA_OVERALL[all_tasks].mean(axis=1, skipna=False))
for i, (task_category, task_category_list) in enumerate(task_dict.items()):
DATA_OVERALL.insert(
i+3,
f"{task_category} MTR% ({len(task_category_list)} datasets)",
task_ranks[task_category_list].mean(axis=1, skipna=False)
)
DATA_OVERALL.insert(
i+4,
f"{task_category} Average ({len(task_category_list)} datasets)",
DATA_OVERALL[task_category_list].mean(axis=1, skipna=False)
)
# sort by MTR in ascending order: lower is better for ranks
DATA_OVERALL.sort_values(mtr_column, ascending=True, inplace=True)
# Start ranking from 1
DATA_OVERALL.insert(0, "Rank", list(range(1, len(DATA_OVERALL) + 1)))
DATA_OVERALL = DATA_OVERALL.round(2)
DATA_TASKS = {}
for task_category, task_category_list in task_dict.items():
DATA_TASKS[task_category] = add_rank(
DATA_OVERALL[["Model", "Model Size (Million Parameters)", "Memory Usage (GB, fp32)"] + task_category_list]
)
DATA_TASKS[task_category] = DATA_TASKS[task_category][DATA_TASKS[task_category].iloc[:, 4:].ne("").any(axis=1)]
# Fill NaN after averaging
DATA_OVERALL.fillna("", inplace=True)
data_overall_rows = [
"Rank",
"Model",
"Model Size (Million Parameters)",
"Memory Usage (GB, fp32)",
"Embedding Dimensions",
"Max Tokens",
mtr_column,
f"Average ({len(all_tasks)} datasets)"
]
for task_category, task_category_list in task_dict.items():
data_overall_rows.append(
f"{task_category} MTR% ({len(task_category_list)} datasets)"
)
data_overall_rows.append(f"{task_category} Average ({len(task_category_list)} datasets)")
DATA_OVERALL = DATA_OVERALL[data_overall_rows]
DATA_OVERALL = DATA_OVERALL[DATA_OVERALL.iloc[:, 5:].ne("").any(axis=1)]
return DATA_OVERALL, DATA_TASKS
boards_data = {}
all_data_tasks = []
for board, board_config in BOARDS_CONFIG.items():
boards_data[board] = {
"data_overall": None,
"data_tasks": {}
}
if board_config["has_overall"]:
data_overall, data_tasks = get_mteb_average(board_config["tasks"], refresh=False)
boards_data[board]["data_overall"] = data_overall
boards_data[board]["data_tasks"] = data_tasks
all_data_tasks.extend(data_tasks.values())
else:
for task_category, task_category_list in board_config["tasks"].items():
data_task_category = get_mteb_data(tasks=[task_category], datasets=task_category_list, refresh=False)
data_task_category.drop(columns=["Embedding Dimensions", "Max Tokens"], inplace=True)
boards_data[board]["data_tasks"][task_category] = data_task_category
all_data_tasks.append(data_task_category)
EXPORTED_DATA_FILEPATH = "boards_data.json"
def export_to_json():
# TODO: make this play nicely with the 'refresh' functionality? (currently
# disabled)
export = {}
for board, board_config in BOARDS_CONFIG.items():
exp = {"data_overall": None, "data_tasks": {}}
data = boards_data[board]
data_overall = data.get("data_overall", None)
if data_overall is not None:
assert isinstance(data_overall, pd.DataFrame), f"data_overall not a df, was {type(data_overall)}"
exp["data_overall"] = data_overall.to_dict(orient="records")
for task_category, task_category_list in board_config["tasks"].items():
task_df = data["data_tasks"][task_category]
assert isinstance(task_df, pd.DataFrame), f"task data not a df, was {type(task_df)}"
exp["data_tasks"][task_category] = task_df.to_dict(orient="records")
export[board] = exp
with open(EXPORTED_DATA_FILEPATH, "w") as fout:
fout.write(json.dumps(export, indent=4))
export_to_json()
# Exact, add all non-nan integer values for every dataset
NUM_SCORES = 0
DATASETS = []
MODELS = []
# LANGUAGES = []
for d in all_data_tasks:
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
cols_to_ignore = 4 if "Average" in d.columns else 3
# Count number of scores including only non-nan floats & excluding the rank column
NUM_SCORES += d.iloc[:, cols_to_ignore:].notna().sum().sum()
# Exclude rank & model name column (first two); Do not count different language versions as different datasets
DATASETS += [i.split(" ")[0] for i in d.columns[cols_to_ignore:]]
# LANGUAGES += [i.split(" ")[-1] for i in d.columns[cols_to_ignore:]]
MODELS += d["Model"].tolist()
NUM_DATASETS = len(set(DATASETS))
# NUM_LANGUAGES = len(set(LANGUAGES))
NUM_MODELS = len(set(MODELS))
# 1. Force headers to wrap
# 2. Force model column (maximum) width
# 3. Prevent model column from overflowing, scroll instead
# 4. Prevent checkbox groups from taking up too much space
css = """
table > thead {
white-space: normal
}
table {
--cell-width-1: 250px
}
table > tbody > tr > td:nth-child(2) > div {
overflow-x: auto
}
.filter-checkbox-group {
max-width: max-content;
}
"""
"""
Each inner tab can have the following keys:
- language: The language of the leaderboard
- language_long: [optional] The long form of the language
- description: The description of the leaderboard
- credits: [optional] The credits for the leaderboard
- data: The data for the leaderboard
- refresh: The function to refresh the leaderboard
"""
# def get_refresh_function(task_category, task_list):
# def _refresh():
# data_task_category = get_mteb_data(tasks=[task_category], datasets=task_list)
# data_task_category.drop(columns=["Embedding Dimensions", "Max Tokens"], inplace=True)
# return data_task_category
# return _refresh
data = {
"Overall": {"metric": "Various, refer to task tabs", "data": []}
}
for task in TASKS:
data[task] = {"metric": TASKS_CONFIG[task]["metric_description"], "data": []}
for board, board_config in BOARDS_CONFIG.items():
init_name = board_config["title"]
if init_name in PRETTY_NAMES:
init_name = PRETTY_NAMES[init_name]
board_pretty_name = f"{init_name} leaderboard"
acronym = board_config.get("acronym", None)
board_icon = board_config.get("icon", None)
if board_icon is None:
board_icon = ""
credits = board_config.get("credits", None)
if board_config["has_overall"]:
overall_pretty_name = board_pretty_name
if acronym is not None:
overall_pretty_name += f" ({board_config['acronym']})"
data["Overall"]["data"].append({
"language": board_config["title"],
"language_long": board_config["language_long"],
"description": f"**Overall MTEB {overall_pretty_name}** 🔮{board_icon}",
"data": boards_data[board]["data_overall"],
# "refresh": lambda: get_mteb_average(board_config["tasks"])[0],#partial(get_mteb_average, board_config["tasks"]),
"credits": credits,
})
for task_category, task_category_list in board_config["tasks"].items():
task_icon = TASKS_CONFIG[task_category]['icon']
if "special_icons" in board_config and isinstance(board_config["special_icons"], dict):
task_icon = board_config["special_icons"].get(task_category, task_icon)
data[task_category]["data"].append({
"language": board_config["title"],
"language_long": board_config["language_long"],
"description": f"**{task_category} {board_pretty_name}** {task_icon}{board_icon}",
"data": boards_data[board]["data_tasks"][task_category],
# "refresh": get_refresh_function(task_category, task_category_list),
"credits": credits,
})
dataframes = []
full_dataframes = []
tabs = []
# The following JavaScript function updates the URL parameters based on the selected task and language
# Additionally, `update_url_task` and `update_url_language` are used to update the current task and language
# The current task and language are stored in the `current_task_language` and `language_per_task` JSON objects
# This is all a bit hacky, but it might be the only way to pass options to a JavaScript function via Gradio
set_window_url_params = """
function(goalUrlObject) {
const params = new URLSearchParams(window.location.search);
for (const [key, value] of Object.entries(goalUrlObject)) {
params.set(key, value);
};
const queryString = '?' + params.toString();
console.log(queryString);
window.history.replaceState({}, '', queryString);
return [];
}
"""
def update_url_task(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
current_task_language["task"] = event.target.id
# Either use the cached language for this task or the 1st language
try:
current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[1].children[0].id)
except Exception as e: # is Overall tab, no description
current_task_language["language"] = language_per_task.get(event.target.id, event.target.children[0].children[0].id)
return current_task_language, language_per_task
def update_url_language(event: gr.SelectData, current_task_language: dict, language_per_task: dict):
current_task_language["language"] = event.target.id
if "task" not in current_task_language:
current_task_language["task"] = "overall"
language_per_task[current_task_language["task"]] = event.target.id
return current_task_language, language_per_task
NUMERIC_INTERVALS = {
"<100M": pd.Interval(0, 100, closed="right"),
"100M to 250M": pd.Interval(100, 250, closed="right"),
"250M to 500M": pd.Interval(250, 500, closed="right"),
"500M to 1B": pd.Interval(500, 1000, closed="right"),
">1B": pd.Interval(1000, 1_000_000, closed="right"),
}
MODEL_TYPES = [
"Open",
"Proprietary",
"Sentence Transformers",
"Cross-Encoders",
"Bi-Encoders"
]
def filter_data(search_query, model_types, model_sizes, *full_dataframes):
output_dataframes = []
for df in full_dataframes:
# Apply the search query
if search_query:
names = df["Model"].map(lambda x: re.match("(.+)", x).group(1))
masks = []
for query in search_query.split(";"):
masks.append(names.str.contains(query))
df = df[reduce(lambda a, b: a | b, masks)]
# Apply the model type filtering
if set(model_types) != set(MODEL_TYPES):
masks = []
for model_type in model_types:
if model_type == "Open":
masks.append(~df["Model"].isin(PROPRIETARY_MODELS))
elif model_type == "Proprietary":
masks.append(df["Model"].isin(PROPRIETARY_MODELS))
elif model_type == "Sentence Transformers":
masks.append(df["Model"].isin(SENTENCE_TRANSFORMERS_COMPATIBLE_MODELS))
elif model_type == "Cross-Encoders":
masks.append(df["Model"].isin(CROSS_ENCODERS))
elif model_type == "Bi-Encoders":
masks.append(df["Model"].isin(BI_ENCODERS))
if masks:
df = df[reduce(lambda a, b: a | b, masks)]
else:
df = pd.DataFrame(columns=df.columns)
# Apply the model size filtering
if set(model_sizes) != set(NUMERIC_INTERVALS.keys()):
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[model_size] for model_size in model_sizes]))
sizes = df["Model Size (Million Parameters)"].replace('', 0)
mask = sizes.apply(lambda size: any(numeric_interval.contains(size)))
df = df[mask]
output_dataframes.append(df)
return output_dataframes
with gr.Blocks(css=css) as block:
# Store the current task and language for updating the URL. This is a bit hacky, but it works
# for passing the current task and language to the JavaScript function via Gradio
current_task_language = gr.JSON(value=dict(), visible=False)
language_per_task = gr.JSON(value=dict(), visible=False)
gr.Markdown(f"""
Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the MTEB GitHub repository 🤗 Refer to the [MTEB paper](https://arxiv.org/abs/2210.07316) for details on metrics, tasks and models.
""")
with gr.Row():
search_bar = gr.Textbox(
label="Search Bar (separate multiple queries with `;`)",
placeholder=" 🔍 Search for a model and press enter...",
)
filter_model_type = gr.CheckboxGroup(
label="Model types",
choices=MODEL_TYPES,
value=MODEL_TYPES,
interactive=True,
elem_classes=["filter-checkbox-group"]
)
filter_model_sizes = gr.CheckboxGroup(
label="Model sizes (in number of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_classes=["filter-checkbox-group"],
scale=2,
)
with gr.Tabs() as outer_tabs:
# Store the tabs for updating them on load based on URL parameters
tabs.append(outer_tabs)
for task, task_values in data.items():
metric = task_values["metric"]
task_tab_id = task.lower().replace(" ", "-")
# Overall, Bitext Mining, Classification, etc.
pretty_task_name = task if task not in PRETTY_NAMES.keys() else PRETTY_NAMES[task]
with gr.Tab(pretty_task_name, id=task_tab_id) as task_tab:
# For updating the 'task' in the URL
task_tab.select(update_url_task, [current_task_language, language_per_task], [current_task_language, language_per_task]).then(None, [current_task_language], [], js=set_window_url_params)
if "Overall" != task:
gr.Markdown(TASK_DESCRIPTIONS[task])
with gr.Tabs() as task_tabs:
# Store the task tabs for updating them on load based on URL parameters
tabs.append(task_tabs)
for item in task_values["data"]:
item_tab_id = item["language"].lower().replace(" ", "-")
# English, Chinese, French, etc.
with gr.Tab(item["language"], id=item_tab_id) as item_tab:
# For updating the 'language' in the URL
item_tab.select(update_url_language, [current_task_language, language_per_task], [current_task_language, language_per_task], trigger_mode="always_last").then(None, [current_task_language], [], js=set_window_url_params)
with gr.Row():
gr.Markdown(f"""
{item['description']}
- **Metric:** {metric}
- **Languages:** {item['language_long'] if 'language_long' in item else item['language']}
{"- **Credits:** " + item['credits'] if ("credits" in item and item["credits"] is not None) else ''}
""")
with gr.Row():
datatype = ["number", "markdown"] + ["number"] * len(item["data"])
dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", height=500)
dataframes.append(dataframe)
full_dataframe = gr.Dataframe(item["data"], datatype=datatype, type="pandas", visible=False)
full_dataframes.append(full_dataframe)
# with gr.Row():
# refresh_button = gr.Button("Refresh")
# refresh_button.click(item["refresh"], inputs=None, outputs=dataframe, concurrency_limit=20)
gr.Markdown(f"""
- **Total Datasets**: {NUM_DATASETS}
- **Total Languages**: 113
- **Total Scores**: {NUM_SCORES}
- **Total Models**: {NUM_MODELS}
""" + r"""
Made with ❤️ for NLP. If this work is useful to you, please consider citing:
```bibtex
@article{muennighoff2022mteb,
doi = {10.48550/ARXIV.2210.07316},
url = {https://arxiv.org/abs/2210.07316},
author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
title = {MTEB: Massive Text Embedding Benchmark},
publisher = {arXiv},
journal={arXiv preprint arXiv:2210.07316},
year = {2022}
}
```
""")
export_button = gr.DownloadButton(
label="Download as JSON",
value=EXPORTED_DATA_FILEPATH,
)
def set_tabs_on_load(request: gr.Request):
"""Set the selected tab based on the URL parameters on load."""
global tabs
valid_task_keys = [child.id for child in tabs[0].children]
return_tabs = [gr.Tabs()] * len(tabs)
query_params = request.request.query_params
task_key = query_params.get("task", "overall")
if task_key not in valid_task_keys:
task_key = "overall"
return_tabs[0] = gr.Tabs(selected=task_key)
tabs_idx = valid_task_keys.index(task_key) + 1
language_key = query_params.get("language", "english")
return_tabs[tabs_idx] = gr.Tabs(selected=language_key)
current_task_language = {"task": task_key, "language": language_key}
language_per_task = {task_key: language_key}
return return_tabs + [current_task_language, language_per_task]
block.load(set_tabs_on_load, inputs=[], outputs=tabs + [current_task_language, language_per_task])
search_bar.submit(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes)
filter_model_type.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes)
filter_model_sizes.change(filter_data, inputs=[search_bar, filter_model_type, filter_model_sizes] + full_dataframes, outputs=dataframes)
block.queue(max_size=10)
block.launch()
# Possible changes:
# Could add graphs / other visual content
# Could add verification marks
# Sources:
# https://huggingface.co/spaces/gradio/leaderboard
# https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard
# https://getemoji.com/