# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" import importlib import datasets import evaluate _CITATION = """\ @misc{ren2020codebleu, title={CodeBLEU: a Method for Automatic Evaluation of Code Synthesis}, author={Shuo Ren and Daya Guo and Shuai Lu and Long Zhou and Shujie Liu and Duyu Tang and Neel Sundaresan and Ming Zhou and Ambrosio Blanco and Shuai Ma}, year={2020}, eprint={2009.10297}, archivePrefix={arXiv}, primaryClass={cs.SE} } """ _DESCRIPTION = """\ Unofficial `CodeBLEU` implementation that supports Linux and MacOS. """ _KWARGS_DESCRIPTION = """ Calculate a weighted combination of `n-gram match (BLEU)`, `weighted n-gram match (BLEU-weighted)`, `AST match` and `data-flow match` scores. Args: predictions: list of predictions to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. language: programming language in ['java','js','c_sharp','php','c','python','cpp']. weights: tuple of 4 floats to use as weights for scores. Defaults to (0.25, 0.25, 0.25, 0.25). Returns: codebleu: resulting `CodeBLEU` score, ngram_match_score: resulting `n-gram match (BLEU)` score, weighted_ngram_match_score: resulting `weighted n-gram match (BLEU-weighted)` score, syntax_match_score: resulting `AST match` score, dataflow_match_score: resulting `data-flow match` score, Examples: >>> metric = evaluate.load("k4black/codebleu") >>> ref = "def sum ( first , second ) :\n return second + first" >>> pred = "def add ( a , b ) :\n return a + b" >>> results = metric.compute(references=[ref], predictions=[pred], language="python") >>> print(results) """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class codebleu(evaluate.Metric): """CodeBLEU metric from CodexGLUE""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=[ datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), "lang": datasets.Value("string"), # "weights": datasets.Value("string"), # "tokenizer": datasets.Value("string"), } ), datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), "lang": datasets.Value("string"), # "weights": datasets.Value("string"), # "tokenizer": datasets.Value("string"), } ), ], # Homepage of the module for documentation homepage="https://github.com/k4black/codebleu", # Additional links to the codebase or references codebase_urls=["https://github.com/k4black/codebleu"], reference_urls=[ "https://github.com/k4black/codebleu", "https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-trans/evaluator", "https://arxiv.org/abs/2009.10297", ], ) def _download_and_prepare(self, dl_manager): """Optional: download external resources useful to compute the scores""" # workarounds as this file have to be named codebleu (evaluate library requirement) self.codebleu_package = importlib.import_module("codebleu") pass def _compute(self, predictions, references, lang, weights=(0.25, 0.25, 0.25, 0.25), tokenizer=None): """Returns the scores""" return self.codebleu_package.calc_codebleu( references=references, predictions=predictions, lang=lang, weights=weights, tokenizer=tokenizer, )