# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang) # # See LICENSE for clarification regarding multiple authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import wave from functools import lru_cache from typing import Tuple import numpy as np import sherpa_onnx from huggingface_hub import hf_hub_download def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]: """ Args: wave_filename: Path to a wave file. It should be single channel and each sample should be 16-bit. Its sample rate does not need to be 16kHz. Returns: Return a tuple containing: - A 1-D array of dtype np.float32 containing the samples, which are normalized to the range [-1, 1]. - sample rate of the wave file """ with wave.open(wave_filename) as f: assert f.getnchannels() == 1, f.getnchannels() assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes num_samples = f.getnframes() samples = f.readframes(num_samples) samples_int16 = np.frombuffer(samples, dtype=np.int16) samples_float32 = samples_int16.astype(np.float32) samples_float32 = samples_float32 / 32768 return samples_float32, f.getframerate() @lru_cache(maxsize=30) def get_file( repo_id: str, filename: str, subfolder: str = ".", ) -> str: nn_model_filename = hf_hub_download( repo_id=repo_id, filename=filename, subfolder=subfolder, ) return nn_model_filename def get_speaker_segmentation_model(repo_id) -> str: assert repo_id in ("pyannote/segmentation-3.0",) if repo_id == "pyannote/segmentation-3.0": return get_file( repo_id="csukuangfj/sherpa-onnx-pyannote-segmentation-3-0", filename="model.onnx", ) def get_speaker_embedding_model(model_name) -> str: assert ( model_name in three_d_speaker_embedding_models + nemo_speaker_embedding_models + wespeaker_embedding_models ) model_name = model_name.split("|")[0] return get_file( repo_id="csukuangfj/speaker-embedding-models", filename=model_name, ) def get_speaker_diarization( segmentation_model: str, embedding_model: str, num_clusters: int, threshold: float ): segmentation = get_speaker_segmentation_model(segmentation_model) embedding = get_speaker_embedding_model(embedding_model) config = sherpa_onnx.OfflineSpeakerDiarizationConfig( segmentation=sherpa_onnx.OfflineSpeakerSegmentationModelConfig( pyannote=sherpa_onnx.OfflineSpeakerSegmentationPyannoteModelConfig( model=segmentation ), debug=True, ), embedding=sherpa_onnx.SpeakerEmbeddingExtractorConfig( model=embedding, debug=True, ), clustering=sherpa_onnx.FastClusteringConfig( num_clusters=num_clusters, threshold=threshold, ), min_duration_on=0.3, min_duration_off=0.5, ) print("config", config) if not config.validate(): raise RuntimeError( "Please check your config and make sure all required files exist" ) return sherpa_onnx.OfflineSpeakerDiarization(config) speaker_segmentation_models = ["pyannote/segmentation-3.0"] nemo_speaker_embedding_models = [ "nemo_en_speakerverification_speakernet.onnx|22MB", "nemo_en_titanet_large.onnx|97MB", "nemo_en_titanet_small.onnx|38MB", ] three_d_speaker_embedding_models = [ "3dspeaker_speech_eres2net_base_sv_zh-cn_3dspeaker_16k.onnx|37.8MB", "3dspeaker_speech_campplus_sv_en_voxceleb_16k.onnx|28.2MB", "3dspeaker_speech_campplus_sv_zh-cn_16k-common.onnx|27MB", "3dspeaker_speech_campplus_sv_zh_en_16k-common_advanced.onnx|27MB", "3dspeaker_speech_eres2net_base_200k_sv_zh-cn_16k-common.onnx|37.8MB", "3dspeaker_speech_eres2net_large_sv_zh-cn_3dspeaker_16k.onnx|111MB", "3dspeaker_speech_eres2net_sv_en_voxceleb_16k.onnx|25.3MB", "3dspeaker_speech_eres2net_sv_zh-cn_16k-common.onnx|210MB", "3dspeaker_speech_eres2netv2_sv_zh-cn_16k-common.onnx|68.1MB", ] wespeaker_embedding_models = [ "wespeaker_en_voxceleb_CAM++.onnx|28MB", "wespeaker_en_voxceleb_CAM++_LM.onnx|28MB", "wespeaker_en_voxceleb_resnet152_LM.onnx|76MB", "wespeaker_en_voxceleb_resnet221_LM.onnx|91MB", "wespeaker_en_voxceleb_resnet293_LM.onnx|110MB", "wespeaker_en_voxceleb_resnet34.onnx|26MB", "wespeaker_en_voxceleb_resnet34_LM.onnx|26MB", "wespeaker_zh_cnceleb_resnet34.onnx|26MB", "wespeaker_zh_cnceleb_resnet34_LM.onnx|26MB", ] embedding2models = { "3D-Speaker": three_d_speaker_embedding_models, "NeMo": nemo_speaker_embedding_models, "WeSpeaker": wespeaker_embedding_models, }