# -------------------------------------------------------- # FocalNets -- Focal Modulation Networks # Copyright (c) 2022 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Jianwei Yang (jianwyan@microsoft.com) # -------------------------------------------------------- import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from timm.models.registry import register_model from torchvision import transforms from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.data import create_transform class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class FocalModulation(nn.Module): def __init__(self, dim, focal_window, focal_level, focal_factor=2, bias=True, proj_drop=0., use_postln=False): super().__init__() self.dim = dim self.focal_window = focal_window self.focal_level = focal_level self.focal_factor = focal_factor self.use_postln = use_postln self.f = nn.Linear(dim, 2*dim + (self.focal_level+1), bias=bias) self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias) self.act = nn.GELU() self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.focal_layers = nn.ModuleList() self.kernel_sizes = [] for k in range(self.focal_level): kernel_size = self.focal_factor*k + self.focal_window self.focal_layers.append( nn.Sequential( nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, groups=dim, padding=kernel_size//2, bias=False), nn.GELU(), ) ) self.kernel_sizes.append(kernel_size) if self.use_postln: self.ln = nn.LayerNorm(dim) def forward(self, x): """ Args: x: input features with shape of (B, H, W, C) """ C = x.shape[-1] # pre linear projection x = self.f(x).permute(0, 3, 1, 2).contiguous() q, ctx, self.gates = torch.split(x, (C, C, self.focal_level+1), 1) # context aggreation ctx_all = 0 for l in range(self.focal_level): ctx = self.focal_layers[l](ctx) ctx_all = ctx_all + ctx*self.gates[:, l:l+1] ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True)) ctx_all = ctx_all + ctx_global*self.gates[:,self.focal_level:] # focal modulation self.modulator = self.h(ctx_all) x_out = q*self.modulator x_out = x_out.permute(0, 2, 3, 1).contiguous() if self.use_postln: x_out = self.ln(x_out) # post linear porjection x_out = self.proj(x_out) x_out = self.proj_drop(x_out) return x_out def extra_repr(self) -> str: return f'dim={self.dim}' def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 flops += N * self.dim * (self.dim * 2 + (self.focal_level+1)) # focal convolution for k in range(self.focal_level): flops += N * (self.kernel_sizes[k]**2+1) * self.dim # global gating flops += N * 1 * self.dim # self.linear flops += N * self.dim * (self.dim + 1) # x = self.proj(x) flops += N * self.dim * self.dim return flops class FocalNetBlock(nn.Module): r""" Focal Modulation Network Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. drop (float, optional): Dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm focal_level (int): Number of focal levels. focal_window (int): Focal window size at first focal level use_layerscale (bool): Whether use layerscale layerscale_value (float): Initial layerscale value use_postln (bool): Whether use layernorm after modulation """ def __init__(self, dim, input_resolution, mlp_ratio=4., drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, focal_level=1, focal_window=3, use_layerscale=False, layerscale_value=1e-4, use_postln=False): super().__init__() self.dim = dim self.input_resolution = input_resolution self.mlp_ratio = mlp_ratio self.focal_window = focal_window self.focal_level = focal_level self.norm1 = norm_layer(dim) self.modulation = FocalModulation(dim, proj_drop=drop, focal_window=focal_window, focal_level=self.focal_level, use_postln=use_postln) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.gamma_1 = 1.0 self.gamma_2 = 1.0 if use_layerscale: self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True) self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True) self.H = None self.W = None def forward(self, x): H, W = self.H, self.W B, L, C = x.shape shortcut = x # Focal Modulation x = self.norm1(x) x = x.view(B, H, W, C) x = self.modulation(x).view(B, H * W, C) # FFN x = shortcut + self.drop_path(self.gamma_1 * x) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, " \ f"mlp_ratio={self.mlp_ratio}" def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # W-MSA/SW-MSA flops += self.modulation.flops(H*W) # mlp flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops class BasicLayer(nn.Module): """ A basic Focal Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. focal_level (int): Number of focal levels focal_window (int): Focal window size at first focal level use_layerscale (bool): Whether use layerscale layerscale_value (float): Initial layerscale value use_postln (bool): Whether use layernorm after modulation """ def __init__(self, dim, out_dim, input_resolution, depth, mlp_ratio=4., drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, focal_level=1, focal_window=1, use_conv_embed=False, use_layerscale=False, layerscale_value=1e-4, use_postln=False): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList([ FocalNetBlock( dim=dim, input_resolution=input_resolution, mlp_ratio=mlp_ratio, drop=drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, focal_level=focal_level, focal_window=focal_window, use_layerscale=use_layerscale, layerscale_value=layerscale_value, use_postln=use_postln, ) for i in range(depth)]) if downsample is not None: self.downsample = downsample( img_size=input_resolution, patch_size=2, in_chans=dim, embed_dim=out_dim, use_conv_embed=use_conv_embed, norm_layer=norm_layer, is_stem=False ) else: self.downsample = None def forward(self, x, H, W): for blk in self.blocks: blk.H, blk.W = H, W if self.use_checkpoint: x = checkpoint.checkpoint(blk, x) else: x = blk(x) if self.downsample is not None: x = x.transpose(1, 2).reshape(x.shape[0], -1, H, W) x, Ho, Wo = self.downsample(x) else: Ho, Wo = H, W return x, Ho, Wo def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" def flops(self): flops = 0 for blk in self.blocks: flops += blk.flops() if self.downsample is not None: flops += self.downsample.flops() return flops class PatchEmbed(nn.Module): r""" Image to Patch Embedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__(self, img_size=(224, 224), patch_size=4, in_chans=3, embed_dim=96, use_conv_embed=False, norm_layer=None, is_stem=False): super().__init__() patch_size = to_2tuple(patch_size) patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim if use_conv_embed: # if we choose to use conv embedding, then we treat the stem and non-stem differently if is_stem: kernel_size = 7; padding = 2; stride = 4 else: kernel_size = 3; padding = 1; stride = 2 self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding) else: self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): B, C, H, W = x.shape x = self.proj(x) H, W = x.shape[2:] x = x.flatten(2).transpose(1, 2) # B Ph*Pw C if self.norm is not None: x = self.norm(x) return x, H, W def flops(self): Ho, Wo = self.patches_resolution flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) if self.norm is not None: flops += Ho * Wo * self.embed_dim return flops class FocalNet(nn.Module): r""" Focal Modulation Networks (FocalNets) Args: img_size (int | tuple(int)): Input image size. Default 224 patch_size (int | tuple(int)): Patch size. Default: 4 in_chans (int): Number of input image channels. Default: 3 num_classes (int): Number of classes for classification head. Default: 1000 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Focal Transformer layer. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 drop_rate (float): Dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False focal_levels (list): How many focal levels at all stages. Note that this excludes the finest-grain level. Default: [1, 1, 1, 1] focal_windows (list): The focal window size at all stages. Default: [7, 5, 3, 1] use_conv_embed (bool): Whether use convolutional embedding. We noted that using convolutional embedding usually improve the performance, but we do not use it by default. Default: False use_layerscale (bool): Whether use layerscale proposed in CaiT. Default: False layerscale_value (float): Value for layer scale. Default: 1e-4 use_postln (bool): Whether use layernorm after modulation (it helps stablize training of large models) """ def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96, depths=[2, 2, 6, 2], mlp_ratio=4., drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, patch_norm=True, use_checkpoint=False, focal_levels=[2, 2, 2, 2], focal_windows=[3, 3, 3, 3], use_conv_embed=False, use_layerscale=False, layerscale_value=1e-4, use_postln=False, **kwargs): super().__init__() self.num_layers = len(depths) embed_dim = [embed_dim * (2 ** i) for i in range(self.num_layers)] self.num_classes = num_classes self.embed_dim = embed_dim self.patch_norm = patch_norm self.num_features = embed_dim[-1] self.mlp_ratio = mlp_ratio # split image into patches using either non-overlapped embedding or overlapped embedding self.patch_embed = PatchEmbed( img_size=to_2tuple(img_size), patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim[0], use_conv_embed=use_conv_embed, norm_layer=norm_layer if self.patch_norm else None, is_stem=True) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # build layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = BasicLayer(dim=embed_dim[i_layer], out_dim=embed_dim[i_layer+1] if (i_layer < self.num_layers - 1) else None, input_resolution=(patches_resolution[0] // (2 ** i_layer), patches_resolution[1] // (2 ** i_layer)), depth=depths[i_layer], mlp_ratio=self.mlp_ratio, drop=drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None, focal_level=focal_levels[i_layer], focal_window=focal_windows[i_layer], use_conv_embed=use_conv_embed, use_checkpoint=use_checkpoint, use_layerscale=use_layerscale, layerscale_value=layerscale_value, use_postln=use_postln, ) self.layers.append(layer) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool1d(1) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {''} @torch.jit.ignore def no_weight_decay_keywords(self): return {''} def forward_features(self, x): x, H, W = self.patch_embed(x) x = self.pos_drop(x) for layer in self.layers: x, H, W = layer(x, H, W) x = self.norm(x) # B L C x = self.avgpool(x.transpose(1, 2)) # B C 1 x = torch.flatten(x, 1) return x def forward(self, x): x = self.forward_features(x) x = self.head(x) return x def flops(self): flops = 0 flops += self.patch_embed.flops() for i, layer in enumerate(self.layers): flops += layer.flops() flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers) flops += self.num_features * self.num_classes return flops def build_transforms(img_size, center_crop=False): t = [transforms.ToPILImage()] if center_crop: size = int((256 / 224) * img_size) t.append( transforms.Resize(size) ) t.append( transforms.CenterCrop(img_size) ) else: t.append( transforms.Resize(img_size) ) t.append(transforms.ToTensor()) t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)) return transforms.Compose(t) def build_transforms4display(img_size, center_crop=False): t = [transforms.ToPILImage()] if center_crop: size = int((256 / 224) * img_size) t.append( transforms.Resize(size) ) t.append( transforms.CenterCrop(img_size) ) else: t.append( transforms.Resize(img_size) ) t.append(transforms.ToTensor()) return transforms.Compose(t) model_urls = { "focalnet_tiny_srf": "", "focalnet_small_srf": "", "focalnet_base_srf": "", "focalnet_tiny_lrf": "", "focalnet_small_lrf": "", "focalnet_base_lrf": "", } @register_model def focalnet_tiny_srf(pretrained=False, **kwargs): model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, **kwargs) if pretrained: url = model_urls['focalnet_tiny_srf'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True) model.load_state_dict(checkpoint["model"]) return model @register_model def focalnet_small_srf(pretrained=False, **kwargs): model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, **kwargs) if pretrained: url = model_urls['focalnet_small_srf'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def focalnet_base_srf(pretrained=False, **kwargs): model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, **kwargs) if pretrained: url = model_urls['focalnet_base_srf'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def focalnet_tiny_lrf(pretrained=False, **kwargs): model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs) if pretrained: url = model_urls['focalnet_tiny_lrf'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True) model.load_state_dict(checkpoint["model"]) return model @register_model def focalnet_small_lrf(pretrained=False, **kwargs): model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, focal_levels=[3, 3, 3, 3], **kwargs) if pretrained: url = model_urls['focalnet_small_lrf'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def focalnet_base_lrf(pretrained=False, **kwargs): model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, focal_levels=[3, 3, 3, 3], **kwargs) if pretrained: url = model_urls['focalnet_base_lrf'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def focalnet_tiny_iso_16(pretrained=False, **kwargs): model = FocalNet(depths=[12], patch_size=16, embed_dim=192, focal_levels=[3], focal_windows=[3], **kwargs) if pretrained: url = model_urls['focalnet_tiny_iso_16'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True) model.load_state_dict(checkpoint["model"]) return model @register_model def focalnet_small_iso_16(pretrained=False, **kwargs): model = FocalNet(depths=[12], patch_size=16, embed_dim=384, focal_levels=[3], focal_windows=[3], **kwargs) if pretrained: url = model_urls['focalnet_small_iso_16'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") model.load_state_dict(checkpoint["model"]) return model @register_model def focalnet_base_iso_16(pretrained=False, **kwargs): model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], focal_windows=[3], use_layerscale=True, use_postln=True, **kwargs) if pretrained: url = model_urls['focalnet_base_iso_16'] checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu") model.load_state_dict(checkpoint["model"]) return model if __name__ == '__main__': img_size = 224 x = torch.rand(16, 3, img_size, img_size).cuda() # model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96) # model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], focal_windows=[3], focal_factors=[2]) model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, focal_levels=[3, 3, 3, 3]).cuda() print(model); model(x) flops = model.flops() print(f"number of GFLOPs: {flops / 1e9}") n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) print(f"number of params: {n_parameters}")