import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.vectorstores import FAISS from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from htmlTemplates import css, bot_template, user_template from langchain.llms import HuggingFaceHub from langchain_community.llms import Ollama from langchain_groq import ChatGroq import os #extraction of the text from the pdfs def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text #dividing the raw text in different chunks def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator= "\n" , chunk_size=1000, chunk_overlap=200, length_function= len ) chunks = text_splitter.split_text(text) return chunks #creating a vector store embeddings from huggingface def get_vectorstore(text_chunks): # embeddings = OpenAIEmbeddings() embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore #creating a conversation chain to store the context for follow up question def get_conversation_chain(vectorstore, groq_api_key): #llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) #llm = Ollama(model="llama2") llm=ChatGroq(groq_api_key=groq_api_key, model_name="llama3-70b-8192") memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain #handling the user input def handle_userinput(user_question): response = st.session_state.conversation({'question' : user_question}) #st.write(response) st.session_state.chat_history = response['chat_history'] for i , message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html= True) else: st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html= True) def main(): load_dotenv() #os.environ['OPENAI_API_KEY']=os.getenv("OPENAI_API_KEY") groq_api_key=os.getenv('GROQ_API_KEY') st.set_page_config("Chat with your pdf!!!!", page_icon=":books:") st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chat with your pdf!!! :books:") #question section user_question = st.text_input("Wanna ask something???") if user_question: handle_userinput(user_question) with st.sidebar: st.subheader("Your documents") #generally supports single file at a time. Need the enable the option to access multiple files pdf_docs = st.file_uploader("Upload your pdf file", type=["pdf"], accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing"): #get the pdf text raw_text = get_pdf_text(pdf_docs) #get the text chunks text_chunks = get_text_chunks(raw_text) #create the vector store with embeddings vectorstore = get_vectorstore(text_chunks) #create the conversation chain st.session_state.conversation = get_conversation_chain(vectorstore, groq_api_key) if __name__ == '__main__': main()