import streamlit as st import transformers # @st.cache(hash_funcs={tokenizers.Tokenizer: id, tokenizers.Tokenizer: id}) def load_stuff(): model = transformers.AutoModelForCausalLM.from_pretrained("distilgpt2") tokenizer = transformers.AutoTokenizer.from_pretrained("distilgpt2") return model, tokenizer st.image("./img.jpg") model, tokenizer = load_stuff() user_inputed_text = st.text_input("Insert text") if len(user_inputed_text) == 0: outputs_text = "no text provided. write some text, meatbag" else: outputs = model.generate( **tokenizer([user_inputed_text], return_tensors='pt'), max_new_tokens=50, do_sample=True, ) outputs_text = tokenizer.decode(outputs[0]) st.write(value=outputs_text)