from toolbox import CatchException, report_execption, write_results_to_file, predict_no_ui_but_counting_down import re import unicodedata fast_debug = False def is_paragraph_break(match): """ 根据给定的匹配结果来判断换行符是否表示段落分隔。 如果换行符前为句子结束标志(句号,感叹号,问号),且下一个字符为大写字母,则换行符更有可能表示段落分隔。 也可以根据之前的内容长度来判断段落是否已经足够长。 """ prev_char, next_char = match.groups() # 句子结束标志 sentence_endings = ".!?" # 设定一个最小段落长度阈值 min_paragraph_length = 140 if prev_char in sentence_endings and next_char.isupper() and len(match.string[:match.start(1)]) > min_paragraph_length: return "\n\n" else: return " " def normalize_text(text): """ 通过把连字(ligatures)等文本特殊符号转换为其基本形式来对文本进行归一化处理。 例如,将连字 "fi" 转换为 "f" 和 "i"。 """ # 对文本进行归一化处理,分解连字 normalized_text = unicodedata.normalize("NFKD", text) # 替换其他特殊字符 cleaned_text = re.sub(r'[^\x00-\x7F]+', '', normalized_text) return cleaned_text def clean_text(raw_text): """ 对从 PDF 提取出的原始文本进行清洗和格式化处理。 1. 对原始文本进行归一化处理。 2. 替换跨行的连词,例如 “Espe-\ncially” 转换为 “Especially”。 3. 根据 heuristic 规则判断换行符是否是段落分隔,并相应地进行替换。 """ # 对文本进行归一化处理 normalized_text = normalize_text(raw_text) # 替换跨行的连词 text = re.sub(r'(\w+-\n\w+)', lambda m: m.group(1).replace('-\n', ''), normalized_text) # 根据前后相邻字符的特点,找到原文本中的换行符 newlines = re.compile(r'(\S)\n(\S)') # 根据 heuristic 规则,用空格或段落分隔符替换原换行符 final_text = re.sub(newlines, lambda m: m.group( 1) + is_paragraph_break(m) + m.group(2), text) return final_text.strip() def read_and_clean_pdf_text(fp): import fitz, re import numpy as np # file_content = "" with fitz.open(fp) as doc: meta_txt = [] meta_font = [] for page in doc: # file_content += page.get_text() text_areas = page.get_text("dict") # 获取页面上的文本信息 # # 行元提取 for each word segment with in line for each line for each block # meta_txt.extend( [ ["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ] for t in text_areas['blocks'] if 'lines' in t]) # meta_font.extend([ [ np.mean([wtf['size'] for wtf in l['spans'] ]) for l in t['lines'] ] for t in text_areas['blocks'] if 'lines' in t]) # 块元提取 for each word segment with in line for each line for each block meta_txt.extend( [ " ".join(["".join( [wtf['text'] for wtf in l['spans'] ]) for l in t['lines'] ]) for t in text_areas['blocks'] if 'lines' in t]) meta_font.extend([ np.mean( [ np.mean([wtf['size'] for wtf in l['spans'] ]) for l in t['lines'] ]) for t in text_areas['blocks'] if 'lines' in t]) def 把字符太少的块清除为回车(meta_txt): for index, block_txt in enumerate(meta_txt): if len(block_txt) < 100: meta_txt[index] = '\n' return meta_txt meta_txt = 把字符太少的块清除为回车(meta_txt) def 清理多余的空行(meta_txt): for index in reversed(range(1, len(meta_txt))): if meta_txt[index] == '\n' and meta_txt[index-1] == '\n': meta_txt.pop(index) return meta_txt meta_txt = 清理多余的空行(meta_txt) def 合并小写开头的段落块(meta_txt): def starts_with_lowercase_word(s): pattern = r"^[a-z]+" match = re.match(pattern, s) if match: return True else: return False for _ in range(100): for index, block_txt in enumerate(meta_txt): if starts_with_lowercase_word(block_txt): if meta_txt[index-1]!='\n': meta_txt[index-1] += ' ' else: meta_txt[index-1] = '' meta_txt[index-1] += meta_txt[index] meta_txt[index] = '\n' return meta_txt meta_txt = 合并小写开头的段落块(meta_txt) meta_txt = 清理多余的空行(meta_txt) meta_txt = '\n'.join(meta_txt) # 清除重复的换行 for _ in range(5): meta_txt = meta_txt.replace('\n\n','\n') # 换行 -> 双换行 meta_txt = meta_txt.replace('\n', '\n\n') # print(meta_txt) return meta_txt @CatchException def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, systemPromptTxt, WEB_PORT): import glob import os # 基本信息:功能、贡献者 chatbot.append([ "函数插件功能?", "批量总结PDF文档。函数插件贡献者: Binary-Husky, ValeriaWong, Eralien"]) yield chatbot, history, '正常' # 尝试导入依赖,如果缺少依赖,则给出安装建议 try: import fitz, tiktoken except: report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。") yield chatbot, history, '正常' return # 清空历史,以免输入溢出 history = [] # 检测输入参数,如没有给定输入参数,直接退出 if os.path.exists(txt): project_folder = txt else: if txt == "": txt = '空空如也的输入栏' report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}") yield chatbot, history, '正常' return # 搜索需要处理的文件清单 file_manifest = [f for f in glob.glob( f'{project_folder}/**/*.pdf', recursive=True)] # 如果没找到任何文件 if len(file_manifest) == 0: report_execption(chatbot, history, a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}") yield chatbot, history, '正常' return # 开始正式执行任务 yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt) def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, systemPromptTxt): import time import glob import os import fitz import tiktoken from concurrent.futures import ThreadPoolExecutor print('begin analysis on:', file_manifest) for index, fp in enumerate(file_manifest): ### 1. 读取PDF文件 file_content = read_and_clean_pdf_text(fp) ### 2. 递归地切割PDF文件 from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf enc = tiktoken.get_encoding("gpt2") TOKEN_LIMIT_PER_FRAGMENT = 2048 get_token_num = lambda txt: len(enc.encode(txt)) # 分解 paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf( txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT) print([get_token_num(frag) for frag in paper_fragments]) ### 3. 逐个段落翻译 ## 3.1. 多线程开始 from request_llm.bridge_chatgpt import predict_no_ui_long_connection n_frag = len(paper_fragments) # 异步原子 mutable = [["", time.time()] for _ in range(n_frag)] # 翻译函数 def translate_(index, fragment, mutable): i_say = f"以下是你需要翻译的文章段落:{fragment}" # 请求gpt,需要一段时间 gpt_say = predict_no_ui_long_connection( inputs=i_say, top_p=top_p, temperature=temperature, history=[], # ["请翻译:" if len(previous_result)!=0 else "", previous_result], sys_prompt="请你作为一个学术翻译,负责将给定的文章段落翻译成中文,要求语言简洁、精准、凝练。你只需要给出翻译后的文本,不能重复原文。", observe_window=mutable[index]) return gpt_say ### 4. 异步任务开始 executor = ThreadPoolExecutor(max_workers=16) # Submit tasks to the pool futures = [executor.submit(translate_, index, frag, mutable) for index, frag in enumerate(paper_fragments)] ### 5. UI主线程,在任务期间提供实时的前端显示 cnt = 0 while True: cnt += 1 time.sleep(1) worker_done = [h.done() for h in futures] if all(worker_done): executor.shutdown(); break # 更好的UI视觉效果 observe_win = [] # 每个线程都要喂狗(看门狗) for thread_index, _ in enumerate(worker_done): mutable[thread_index][1] = time.time() # 在前端打印些好玩的东西 for thread_index, _ in enumerate(worker_done): print_something_really_funny = "[ ...`"+mutable[thread_index][0][-30:].replace('\n','').replace('```','...').replace(' ','.').replace('
','.....').replace('$','.')+"`... ]" observe_win.append(print_something_really_funny) stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(worker_done, observe_win)]) chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))]; msg = "正常" yield chatbot, history, msg # Wait for tasks to complete results = [future.result() for future in futures] print(results) # full_result += gpt_say # history.extend([fp, full_result]) res = write_results_to_file(history) chatbot.append(("完成了吗?", res)); msg = "完成" yield chatbot, history, msg # if __name__ == '__main__': # pro()