import gradio as gr from fastai.vision.all import * from icevision.all import * class_map = ClassMap(['raccoon']) model = models.torchvision.faster_rcnn.model(backbone=models.torchvision.faster_rcnn.backbones.resnet18_fpn(pretrained=True),num_classes=len(class_map)) state_dict = torch.load('fasterRCNNRaccoon.pth',map_location=torch.device('cpu')) model.load_state_dict(state_dict) infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(384),tfms.A.Normalize()]) def predict(img): #img = PILImage.create(img) pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5) return pred_dict['img'] gr.Interface(fn=predict, inputs=gr.inputs.Image(type = 'filepath'), outputs=gr.outputs.Image(type='pil'),examples=['raccoon-103.jpg','raccoon-104.jpg']).launch(share=False)