import io import os import shutil import base64 import gradio as gr from PIL import Image, ImageDraw from MobileAgent.text_localization import ocr from MobileAgent.icon_localization import det from MobileAgent.local_server import mobile_agent_infer from modelscope import snapshot_download from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks chatbot_css = """ """ temp_file = "temp" screenshot = "screenshot" cache = "cache" if not os.path.exists(temp_file): os.mkdir(temp_file) if not os.path.exists(screenshot): os.mkdir(screenshot) if not os.path.exists(cache): os.mkdir(cache) groundingdino_dir = snapshot_download('AI-ModelScope/GroundingDINO', revision='v1.0.0') groundingdino_model = pipeline('grounding-dino-task', model=groundingdino_dir) ocr_detection = pipeline(Tasks.ocr_detection, model='damo/cv_resnet18_ocr-detection-line-level_damo') ocr_recognition = pipeline(Tasks.ocr_recognition, model='damo/cv_convnextTiny_ocr-recognition-document_damo') def encode_image(image_path): with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode('utf-8') def get_all_files_in_folder(folder_path): file_list = [] for file_name in os.listdir(folder_path): file_list.append(file_name) return file_list def crop(image, box, i): image = Image.open(image) x1, y1, x2, y2 = int(box[0]), int(box[1]), int(box[2]), int(box[3]) if x1 >= x2-10 or y1 >= y2-10: return cropped_image = image.crop((x1, y1, x2, y2)) cropped_image.save(f"./temp/{i}.png", format="PNG") def merge_text_blocks(text_list, coordinates_list): merged_text_blocks = [] merged_coordinates = [] sorted_indices = sorted(range(len(coordinates_list)), key=lambda k: (coordinates_list[k][1], coordinates_list[k][0])) sorted_text_list = [text_list[i] for i in sorted_indices] sorted_coordinates_list = [coordinates_list[i] for i in sorted_indices] num_blocks = len(sorted_text_list) merge = [False] * num_blocks for i in range(num_blocks): if merge[i]: continue anchor = i group_text = [sorted_text_list[anchor]] group_coordinates = [sorted_coordinates_list[anchor]] for j in range(i+1, num_blocks): if merge[j]: continue if abs(sorted_coordinates_list[anchor][0] - sorted_coordinates_list[j][0]) < 10 and \ sorted_coordinates_list[j][1] - sorted_coordinates_list[anchor][3] >= -10 and sorted_coordinates_list[j][1] - sorted_coordinates_list[anchor][3] < 30 and \ abs(sorted_coordinates_list[anchor][3] - sorted_coordinates_list[anchor][1] - (sorted_coordinates_list[j][3] - sorted_coordinates_list[j][1])) < 10: group_text.append(sorted_text_list[j]) group_coordinates.append(sorted_coordinates_list[j]) merge[anchor] = True anchor = j merge[anchor] = True merged_text = "\n".join(group_text) min_x1 = min(group_coordinates, key=lambda x: x[0])[0] min_y1 = min(group_coordinates, key=lambda x: x[1])[1] max_x2 = max(group_coordinates, key=lambda x: x[2])[2] max_y2 = max(group_coordinates, key=lambda x: x[3])[3] merged_text_blocks.append(merged_text) merged_coordinates.append([min_x1, min_y1, max_x2, max_y2]) return merged_text_blocks, merged_coordinates def get_perception_infos(screenshot_file): width, height = Image.open(screenshot_file).size text, coordinates = ocr(screenshot_file, ocr_detection, ocr_recognition) text, coordinates = merge_text_blocks(text, coordinates) perception_infos = [] for i in range(len(coordinates)): perception_info = {"text": "text: " + text[i], "coordinates": coordinates[i]} perception_infos.append(perception_info) coordinates = det(screenshot_file, "icon", groundingdino_model) for i in range(len(coordinates)): perception_info = {"text": "icon", "coordinates": coordinates[i]} perception_infos.append(perception_info) image_box = [] image_id = [] for i in range(len(perception_infos)): if perception_infos[i]['text'] == 'icon': image_box.append(perception_infos[i]['coordinates']) image_id.append(i) for i in range(len(image_box)): crop(screenshot_file, image_box[i], image_id[i]) images = get_all_files_in_folder(temp_file) if len(images) > 0: images = sorted(images, key=lambda x: int(x.split('/')[-1].split('.')[0])) image_id = [int(image.split('/')[-1].split('.')[0]) for image in images] icon_map = {} prompt = 'This image is an icon from a phone screen. Please briefly describe the shape and color of this icon in one sentence.' string_image = [] for i in range(len(images)): image_path = os.path.join(temp_file, images[i]) string_image.append({"image_name": images[i], "image_file": encode_image(image_path)}) query_data = {"task": "caption", "images": string_image, "query": prompt} response_query = mobile_agent_infer(query_data) icon_map = response_query["icon_map"] for i, j in zip(image_id, range(1, len(image_id)+1)): if icon_map.get(str(j)): perception_infos[i]['text'] = "icon: " + icon_map[str(j)] for i in range(len(perception_infos)): perception_infos[i]['coordinates'] = [int((perception_infos[i]['coordinates'][0]+perception_infos[i]['coordinates'][2])/2), int((perception_infos[i]['coordinates'][1]+perception_infos[i]['coordinates'][3])/2)] return perception_infos, width, height def image_to_base64(image): buffered = io.BytesIO() image.save(buffered, format="PNG") img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") img_html = f'' return img_html def chatbot(image, instruction, add_info, history, chat_log): if history == {}: thought_history = [] summary_history = [] action_history = [] summary = "" action = "" completed_requirements = "" memory = "" insight = "" error_flag = False user_msg = "
{}
".format(instruction) else: thought_history = history["thought_history"] summary_history = history["summary_history"] action_history = history["action_history"] summary = history["summary"] action = history["action"] completed_requirements = history["completed_requirements"] memory = history["memory"][0] insight = history["insight"] error_flag = history["error_flag"] user_msg = "
{}
".format("I have uploaded the screenshot. Please continue operating.") images = get_all_files_in_folder(cache) if len(images) > 0 and len(images) <= 100: images = sorted(images, key=lambda x: int(x.split('/')[-1].split('.')[0])) image_id = [int(image.split('/')[-1].split('.')[0]) for image in images] cur_image_id = image_id[-1] + 1 elif len(images) > 100: images = sorted(images, key=lambda x: int(x.split('/')[-1].split('.')[0])) image_id = [int(image.split('/')[-1].split('.')[0]) for image in images] cur_image_id = image_id[-1] + 1 os.remove(os.path.join(cache, str(image_id[0])+".png")) else: cur_image_id = 1 image.save(os.path.join(cache, str(cur_image_id) + ".png"), format="PNG") screenshot_file = os.path.join(cache, str(cur_image_id) + ".png") perception_infos, width, height = get_perception_infos(screenshot_file) shutil.rmtree(temp_file) os.mkdir(temp_file) local_screenshot_file = encode_image(screenshot_file) query_data = { "task": "decision", "screenshot_file": local_screenshot_file, "instruction": instruction, "perception_infos": perception_infos, "width": width, "height": height, "summary_history": summary_history, "action_history": action_history, "summary": summary, "action": action, "add_info": add_info, "error_flag": error_flag, "completed_requirements": completed_requirements, "memory": memory, "memory_switch": True, "insight": insight } response_query = mobile_agent_infer(query_data) output_action = response_query["decision"] output_memory = response_query["memory"] if output_action == "No token": bot_response = ["
{}
".format("Sorry, the resources can be exhausted today.")] chat_html = "
{}
".format("".join(bot_response)) return chatbot_css + chat_html, history, chat_log thought = output_action.split("### Thought ###")[-1].split("### Action ###")[0].replace("\n", " ").replace(":", "").replace(" ", " ").strip() summary = output_action.split("### Operation ###")[-1].replace("\n", " ").replace(" ", " ").strip() action = output_action.split("### Action ###")[-1].split("### Operation ###")[0].replace("\n", " ").replace(" ", " ").strip() output_memory = output_memory.split("### Important content ###")[-1].split("\n\n")[0].strip() + "\n" if "None" not in output_memory and output_memory not in memory: memory += output_memory if "Open app" in action: bot_response = "Please click the red circle and upload the current screenshot again." app_name = action.split("(")[-1].split(")")[0] text, coordinate = ocr(screenshot_file, ocr_detection, ocr_recognition) for ti in range(len(text)): if app_name == text[ti]: name_coordinate = [int((coordinate[ti][0] + coordinate[ti][2])/2), int((coordinate[ti][1] + coordinate[ti][3])/2)] x, y = name_coordinate[0], name_coordinate[1] radius = 75 draw = ImageDraw.Draw(image) draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=10) break elif "Tap" in action: bot_response = "Please click the red circle and upload the current screenshot again." coordinate = action.split("(")[-1].split(")")[0].split(", ") x, y = int(coordinate[0]), int(coordinate[1]) radius = 75 draw = ImageDraw.Draw(image) draw.ellipse([x - radius, y - radius, x + radius, y + radius], outline='red', width=10) elif "Swipe" in action: bot_response = "Please slide from red circle to blue circle and upload the current screenshot again." coordinate1 = action.split("Swipe (")[-1].split("), (")[0].split(", ") coordinate2 = action.split("), (")[-1].split(")")[0].split(", ") x1, y1 = int(coordinate1[0]), int(coordinate1[1]) x2, y2 = int(coordinate2[0]), int(coordinate2[1]) radius = 75 draw = ImageDraw.Draw(image) draw.ellipse([x1 - radius, y1 - radius, x1 + radius, y1 + radius], outline='red', width=10) draw.ellipse([x2 - radius, y2 - radius, x2 + radius, y2 + radius], outline='blue', width=10) elif "Type" in action: if "(text)" not in action: text = action.split("(")[-1].split(")")[0] else: text = action.split(" \"")[-1].split("\"")[0] bot_response = f"Please type the \"{text}\" and upload the current screenshot again." elif "Back" in action: bot_response = f"Please back to previous page and upload the current screenshot again." elif "Home" in action: bot_response = f"Please back to home page and upload the current screenshot again." elif "Stop" in action: bot_response = f"Task completed." bot_text1 = "
{}
".format("### Decision ###") bot_thought = "
{}
".format("Thought: " + thought) bot_action = "
{}
".format("Action: " + action) bot_operation = "
{}
".format("Operation: " + summary) bot_text2 = "
{}
".format("### Memory ###") bot_memory = "
{}
".format(output_memory) bot_response = "
{}
".format(bot_response) if image is not None: bot_img_html = image_to_base64(image) bot_response = "
{}
".format(bot_img_html) + bot_response chat_log.append(user_msg) thought_history.append(thought) summary_history.append(summary) action_history.append(action) history["thought_history"] = thought_history history["summary_history"] = summary_history history["action_history"] = action_history history["summary"] = summary history["action"] = action history["memory"] = memory, history["memory_switch"] = True, history["insight"] = insight history["error_flag"] = error_flag query_data = { "task": "planning", "instruction": instruction, "thought_history": thought_history, "summary_history": summary_history, "action_history": action_history, "completed_requirements": "", "add_info": add_info } response_query = mobile_agent_infer(query_data) output_planning = response_query["planning"] if output_planning == "No token": bot_response = ["
{}
".format("Sorry, the resources can be exhausted today.")] chat_html = "
{}
".format("".join(bot_response)) return chatbot_css + chat_html, history, chat_log output_planning = output_planning.split("### Completed contents ###")[-1].replace("\n", " ").strip() history["completed_requirements"] = output_planning bot_text3 = "
{}
".format("### Planning ###") output_planning = "
{}
".format(output_planning) chat_log.append(bot_text3) chat_log.append(output_planning) chat_log.append(bot_text1) chat_log.append(bot_thought) chat_log.append(bot_action) chat_log.append(bot_operation) chat_log.append(bot_text2) chat_log.append(bot_memory) chat_log.append(bot_response) chat_html = "
{}
".format("".join(chat_log)) return chatbot_css + chat_html, history, chat_log def lock_input(instruction): return gr.update(value=instruction, interactive=False), gr.update(value=None) def reset_demo(): return gr.update(value="", interactive=True), gr.update(value="If you want to tap an icon of an app, use the action \"Open app\"", interactive=True), "
", {}, [] tos_markdown = ("""
If you like our project, please give us a star ✨ on Github for latest update. **Terms of use** 1. Input your instruction in \"Instruction\", for example \"Turn on the dark mode\". 2. You can input helpful operation knowledge in \"Knowledge\". 3. Click \"Submit\" to get the operation. You need to operate your mobile device according to the operation and then upload the screenshot after your operation. 4. The 5 cases in \"Examples\" are a complete flow. Click and submit from top to bottom to experience. 5. Due to limited resources, each operation may take a long time, please be patient and wait. **使用说明** 1. 在“Instruction”中输入你的指令,例如“打开深色模式”。 2. 你可以在“Knowledge”中输入帮助性的操作知识。 3. 点击“Submit”来获得操作。你需要根据输出来操作手机,并且上传操作后的截图。 4. “Example”中的5个例子是一个任务。从上到下点击它们并且点击“Submit”来体验。 5. 由于资源有限,每次操作的时间会比较长,请耐心等待。""") title_markdowm = ("""# Mobile-Agent-v2: Mobile Device Operation Assistant with Effective Navigation via Multi-Agent Collaboration""") instruction_input = gr.Textbox(label="Instruction", placeholder="Input your instruction") knowledge_input = gr.Textbox(label="Knowledge", placeholder="Input your knowledge", value="If you want to tap an icon of an app, use the action \"Open app\"") with gr.Blocks() as demo: history_state = gr.State(value={}) history_output = gr.State(value=[]) with gr.Row(): gr.Markdown(title_markdowm) with gr.Row(): with gr.Column(scale=5): gr.Markdown(tos_markdown) with gr.Row(): image_input = gr.Image(label="Screenshot", type="pil", height=550, width=230) gr.Examples(examples=[ ["./example/example_1.jpg", "Turn on the dark mode"], ["./example/example_2.jpg", "Turn on the dark mode"], ["./example/example_3.jpg", "Turn on the dark mode"], ["./example/example_4.jpg", "Turn on the dark mode"], ["./example/example_5.jpg", "Turn on the dark mode"], ], inputs=[image_input, instruction_input, knowledge_input]) with gr.Column(scale=6): instruction_input.render() knowledge_input.render() with gr.Row(): start_button = gr.Button("Submit") clear_button = gr.Button("Clear") output_component = gr.HTML(label="Chat history", value="
") start_button.click( fn=lambda image, instruction, add_info, history, output: chatbot(image, instruction, add_info, history, output), inputs=[image_input, instruction_input, knowledge_input, history_state, history_output], outputs=[output_component, history_state, history_output] ) clear_button.click( fn=reset_demo, inputs=[], outputs=[instruction_input, knowledge_input, output_component, history_state, history_output] ) demo.queue().launch(share=True)