# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # Copyright 2022 Zhejiang University Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim import math from typing import List, Optional, Tuple, Union import numpy as np import paddle from ..configuration_utils import ConfigMixin, register_to_config from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS from .scheduling_utils import SchedulerMixin, SchedulerOutput def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ def alpha_bar(time_step): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) return paddle.to_tensor(betas, dtype="float32") class PNDMScheduler(SchedulerMixin, ConfigMixin): """ Pseudo numerical methods for diffusion models (PNDM) proposes using more advanced ODE integration techniques, namely Runge-Kutta method and a linear multi-step method. [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. For more details, see the original paper: https://arxiv.org/abs/2202.09778 Args: num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`): the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from `linear`, `scaled_linear`, or `squaredcos_cap_v2`. trained_betas (`np.ndarray`, optional): option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. skip_prk_steps (`bool`): allows the scheduler to skip the Runge-Kutta steps that are defined in the original paper as being required before plms steps; defaults to `False`. set_alpha_to_one (`bool`, default `False`): each diffusion step uses the value of alphas product at that step and at the previous one. For the final step there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`, otherwise it uses the value of alpha at step 0. prediction_type (`str`, default `epsilon`, optional): prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf) steps_offset (`int`, default `0`): an offset added to the inference steps. You can use a combination of `offset=1` and `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in stable diffusion. """ _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy() order = 1 @register_to_config def __init__( self, num_train_timesteps: int = 1000, beta_start: float = 0.0001, beta_end: float = 0.02, beta_schedule: str = "linear", trained_betas: Optional[Union[np.ndarray, List[float]]] = None, skip_prk_steps: bool = False, set_alpha_to_one: bool = False, prediction_type: str = "epsilon", steps_offset: int = 0, ): if trained_betas is not None: self.betas = paddle.to_tensor(trained_betas, dtype="float32") elif beta_schedule == "linear": self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32") elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2 elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule self.betas = betas_for_alpha_bar(num_train_timesteps) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = paddle.cumprod(self.alphas, 0) self.final_alpha_cumprod = paddle.to_tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0] # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. self.pndm_order = 4 # running values self.cur_model_output = 0 self.counter = 0 self.cur_sample = None self.ets = [] # setable values self.num_inference_steps = None self._timesteps = np.arange(0, num_train_timesteps)[::-1].copy() self.prk_timesteps = None self.plms_timesteps = None self.timesteps = None def set_timesteps(self, num_inference_steps: int): """ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`int`): the number of diffusion steps used when generating samples with a pre-trained model. """ self.num_inference_steps = num_inference_steps step_ratio = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 self._timesteps = (np.arange(0, num_inference_steps) * step_ratio).round() self._timesteps += self.config.steps_offset if self.config.skip_prk_steps: # for some models like stable diffusion the prk steps can/should be skipped to # produce better results. When using PNDM with `self.config.skip_prk_steps` the implementation # is based on crowsonkb's PLMS sampler implementation: https://github.com/CompVis/latent-diffusion/pull/51 self.prk_timesteps = np.array([]) self.plms_timesteps = np.concatenate([self._timesteps[:-1], self._timesteps[-2:-1], self._timesteps[-1:]])[ ::-1 ].copy() else: prk_timesteps = np.array(self._timesteps[-self.pndm_order :]).repeat(2) + np.tile( np.array([0, self.config.num_train_timesteps // num_inference_steps // 2]), self.pndm_order ) self.prk_timesteps = (prk_timesteps[:-1].repeat(2)[1:-1])[::-1].copy() self.plms_timesteps = self._timesteps[:-3][ ::-1 ].copy() # we copy to avoid having negative strides which are not supported by paddle timesteps = np.concatenate([self.prk_timesteps, self.plms_timesteps]).astype(np.int64) self.timesteps = paddle.to_tensor(timesteps) self.ets = [] self.counter = 0 def step( self, model_output: paddle.Tensor, timestep: int, sample: paddle.Tensor, return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). This function calls `step_prk()` or `step_plms()` depending on the internal variable `counter`. Args: model_output (`paddle.Tensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`paddle.Tensor`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than SchedulerOutput class Returns: [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if self.counter < len(self.prk_timesteps) and not self.config.skip_prk_steps: return self.step_prk(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict) else: return self.step_plms(model_output=model_output, timestep=timestep, sample=sample, return_dict=return_dict) def step_prk( self, model_output: paddle.Tensor, timestep: int, sample: paddle.Tensor, return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Step function propagating the sample with the Runge-Kutta method. RK takes 4 forward passes to approximate the solution to the differential equation. Args: model_output (`paddle.Tensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`paddle.Tensor`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than SchedulerOutput class Returns: [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) diff_to_prev = 0 if self.counter % 2 else self.config.num_train_timesteps // self.num_inference_steps // 2 prev_timestep = timestep - diff_to_prev timestep = self.prk_timesteps[self.counter // 4 * 4] if self.counter % 4 == 0: self.cur_model_output += 1 / 6 * model_output self.ets.append(model_output) self.cur_sample = sample elif (self.counter - 1) % 4 == 0: self.cur_model_output += 1 / 3 * model_output elif (self.counter - 2) % 4 == 0: self.cur_model_output += 1 / 3 * model_output elif (self.counter - 3) % 4 == 0: model_output = self.cur_model_output + 1 / 6 * model_output self.cur_model_output = 0 # cur_sample should not be `None` cur_sample = self.cur_sample if self.cur_sample is not None else sample prev_sample = self._get_prev_sample(cur_sample, timestep, prev_timestep, model_output) self.counter += 1 if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample) def step_plms( self, model_output: paddle.Tensor, timestep: int, sample: paddle.Tensor, return_dict: bool = True, ) -> Union[SchedulerOutput, Tuple]: """ Step function propagating the sample with the linear multi-step method. This has one forward pass with multiple times to approximate the solution. Args: model_output (`paddle.Tensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`paddle.Tensor`): current instance of sample being created by diffusion process. return_dict (`bool`): option for returning tuple rather than SchedulerOutput class Returns: [`~scheduling_utils.SchedulerOutput`] or `tuple`: [`~scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) if not self.config.skip_prk_steps and len(self.ets) < 3: raise ValueError( f"{self.__class__} can only be run AFTER scheduler has been run " "in 'prk' mode for at least 12 iterations " "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py " "for more information." ) prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps if self.counter != 1: self.ets = self.ets[-3:] self.ets.append(model_output) else: prev_timestep = timestep timestep = timestep + self.config.num_train_timesteps // self.num_inference_steps if len(self.ets) == 1 and self.counter == 0: model_output = model_output self.cur_sample = sample elif len(self.ets) == 1 and self.counter == 1: model_output = (model_output + self.ets[-1]) / 2 sample = self.cur_sample self.cur_sample = None elif len(self.ets) == 2: model_output = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets) == 3: model_output = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: model_output = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) prev_sample = self._get_prev_sample(sample, timestep, prev_timestep, model_output) self.counter += 1 if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=prev_sample) def scale_model_input(self, sample: paddle.Tensor, *args, **kwargs) -> paddle.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`paddle.Tensor`): input sample Returns: `paddle.Tensor`: scaled input sample """ return sample def _get_prev_sample(self, sample, timestep, prev_timestep, model_output): # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf # this function computes x_(t−δ) using the formula of (9) # Note that x_t needs to be added to both sides of the equation # Notation ( -> # alpha_prod_t -> α_t # alpha_prod_t_prev -> α_(t−δ) # beta_prod_t -> (1 - α_t) # beta_prod_t_prev -> (1 - α_(t−δ)) # sample -> x_t # model_output -> e_θ(x_t, t) # prev_sample -> x_(t−δ) alpha_prod_t = self.alphas_cumprod[timestep] alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod beta_prod_t = 1 - alpha_prod_t beta_prod_t_prev = 1 - alpha_prod_t_prev if self.config.prediction_type == "v_prediction": model_output = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample elif self.config.prediction_type != "epsilon": raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `v_prediction`" ) # corresponds to (α_(t−δ) - α_t) divided by # denominator of x_t in formula (9) and plus 1 # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) = # sqrt(α_(t−δ)) / sqrt(α_t)) sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5) # corresponds to denominator of e_θ(x_t, t) in formula (9) model_output_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + ( alpha_prod_t * beta_prod_t * alpha_prod_t_prev ) ** (0.5) # full formula (9) prev_sample = ( sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * model_output / model_output_denom_coeff ) return prev_sample def add_noise( self, original_samples: paddle.Tensor, noise: paddle.Tensor, timesteps: paddle.Tensor, ) -> paddle.Tensor: # Make sure alphas_cumprod and timestep have same dtype as original_samples self.alphas_cumprod = self.alphas_cumprod.cast(original_samples.dtype) sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 sqrt_alpha_prod = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1) sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.5 sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1) noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __len__(self): return self.config.num_train_timesteps