# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle import paddle.nn.functional as F from paddle import nn from .resnet import Downsample1D, ResidualTemporalBlock1D, Upsample1D, rearrange_dims class DownResnetBlock1D(nn.Layer): def __init__( self, in_channels, out_channels=None, num_layers=1, conv_shortcut=False, temb_channels=32, groups=32, groups_out=None, non_linearity=None, time_embedding_norm="default", output_scale_factor=1.0, add_downsample=True, ): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.time_embedding_norm = time_embedding_norm self.add_downsample = add_downsample self.output_scale_factor = output_scale_factor if groups_out is None: groups_out = groups # there will always be at least one resnet resnets = [ResidualTemporalBlock1D(in_channels, out_channels, embed_dim=temb_channels)] for _ in range(num_layers): resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=temb_channels)) self.resnets = nn.LayerList(resnets) if non_linearity == "swish": self.nonlinearity = lambda x: F.silu(x) elif non_linearity == "mish": self.nonlinearity = nn.Mish() elif non_linearity == "silu": self.nonlinearity = nn.Silu() else: self.nonlinearity = None self.downsample = None if add_downsample: self.downsample = Downsample1D(out_channels, use_conv=True, padding=1) def forward(self, hidden_states, temb=None): output_states = () hidden_states = self.resnets[0](hidden_states, temb) for resnet in self.resnets[1:]: hidden_states = resnet(hidden_states, temb) output_states += (hidden_states,) if self.nonlinearity is not None: hidden_states = self.nonlinearity(hidden_states) if self.downsample is not None: hidden_states = self.downsample(hidden_states) return hidden_states, output_states class UpResnetBlock1D(nn.Layer): def __init__( self, in_channels, out_channels=None, num_layers=1, temb_channels=32, groups=32, groups_out=None, non_linearity=None, time_embedding_norm="default", output_scale_factor=1.0, add_upsample=True, ): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.time_embedding_norm = time_embedding_norm self.add_upsample = add_upsample self.output_scale_factor = output_scale_factor if groups_out is None: groups_out = groups # there will always be at least one resnet resnets = [ResidualTemporalBlock1D(2 * in_channels, out_channels, embed_dim=temb_channels)] for _ in range(num_layers): resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=temb_channels)) self.resnets = nn.LayerList(resnets) if non_linearity == "swish": self.nonlinearity = lambda x: F.silu(x) elif non_linearity == "mish": self.nonlinearity = nn.Mish() elif non_linearity == "silu": self.nonlinearity = nn.Silu() else: self.nonlinearity = None self.upsample = None if add_upsample: self.upsample = Upsample1D(out_channels, use_conv_transpose=True) def forward(self, hidden_states, res_hidden_states_tuple=None, temb=None): if res_hidden_states_tuple is not None: res_hidden_states = res_hidden_states_tuple[-1] hidden_states = paddle.concat((hidden_states, res_hidden_states), axis=1) hidden_states = self.resnets[0](hidden_states, temb) for resnet in self.resnets[1:]: hidden_states = resnet(hidden_states, temb) if self.nonlinearity is not None: hidden_states = self.nonlinearity(hidden_states) if self.upsample is not None: hidden_states = self.upsample(hidden_states) return hidden_states class ValueFunctionMidBlock1D(nn.Layer): def __init__(self, in_channels, out_channels, embed_dim): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.embed_dim = embed_dim self.res1 = ResidualTemporalBlock1D(in_channels, in_channels // 2, embed_dim=embed_dim) self.down1 = Downsample1D(out_channels // 2, use_conv=True) self.res2 = ResidualTemporalBlock1D(in_channels // 2, in_channels // 4, embed_dim=embed_dim) self.down2 = Downsample1D(out_channels // 4, use_conv=True) def forward(self, x, temb=None): x = self.res1(x, temb) x = self.down1(x) x = self.res2(x, temb) x = self.down2(x) return x class MidResTemporalBlock1D(nn.Layer): def __init__( self, in_channels, out_channels, embed_dim, num_layers: int = 1, add_downsample: bool = False, add_upsample: bool = False, non_linearity=None, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.add_downsample = add_downsample # there will always be at least one resnet resnets = [ResidualTemporalBlock1D(in_channels, out_channels, embed_dim=embed_dim)] for _ in range(num_layers): resnets.append(ResidualTemporalBlock1D(out_channels, out_channels, embed_dim=embed_dim)) self.resnets = nn.LayerList(resnets) if non_linearity == "swish": self.nonlinearity = lambda x: F.silu(x) elif non_linearity == "mish": self.nonlinearity = nn.Mish() elif non_linearity == "silu": self.nonlinearity = nn.Silu() else: self.nonlinearity = None self.upsample = None if add_upsample: self.upsample = Downsample1D(out_channels, use_conv=True) self.downsample = None if add_downsample: self.downsample = Downsample1D(out_channels, use_conv=True) if self.upsample and self.downsample: raise ValueError("Block cannot downsample and upsample") def forward(self, hidden_states, temb): hidden_states = self.resnets[0](hidden_states, temb) for resnet in self.resnets[1:]: hidden_states = resnet(hidden_states, temb) if self.upsample: hidden_states = self.upsample(hidden_states) if self.downsample: self.downsample = self.downsample(hidden_states) return hidden_states class OutConv1DBlock(nn.Layer): def __init__(self, num_groups_out, out_channels, embed_dim, act_fn): super().__init__() self.final_conv1d_1 = nn.Conv1D(embed_dim, embed_dim, 5, padding=2) self.final_conv1d_gn = nn.GroupNorm(num_groups_out, embed_dim) if act_fn == "silu": self.final_conv1d_act = nn.Silu() if act_fn == "mish": self.final_conv1d_act = nn.Mish() self.final_conv1d_2 = nn.Conv1D(embed_dim, out_channels, 1) def forward(self, hidden_states, temb=None): hidden_states = self.final_conv1d_1(hidden_states) hidden_states = rearrange_dims(hidden_states) hidden_states = self.final_conv1d_gn(hidden_states) hidden_states = rearrange_dims(hidden_states) hidden_states = self.final_conv1d_act(hidden_states) hidden_states = self.final_conv1d_2(hidden_states) return hidden_states class OutValueFunctionBlock(nn.Layer): def __init__(self, fc_dim, embed_dim): super().__init__() self.final_block = nn.LayerList( [ nn.Linear(fc_dim + embed_dim, fc_dim // 2), nn.Mish(), nn.Linear(fc_dim // 2, 1), ] ) def forward(self, hidden_states, temb): hidden_states = hidden_states.reshape([hidden_states.shape[0], -1]) hidden_states = paddle.concat((hidden_states, temb), axis=-1) for layer in self.final_block: hidden_states = layer(hidden_states) return hidden_states _kernels = { "linear": [1 / 8, 3 / 8, 3 / 8, 1 / 8], "cubic": [-0.01171875, -0.03515625, 0.11328125, 0.43359375, 0.43359375, 0.11328125, -0.03515625, -0.01171875], "lanczos3": [ 0.003689131001010537, 0.015056144446134567, -0.03399861603975296, -0.066637322306633, 0.13550527393817902, 0.44638532400131226, 0.44638532400131226, 0.13550527393817902, -0.066637322306633, -0.03399861603975296, 0.015056144446134567, 0.003689131001010537, ], } class Downsample1d(nn.Layer): def __init__(self, kernel="linear", pad_mode="reflect"): super().__init__() self.pad_mode = pad_mode kernel_1d = paddle.to_tensor(_kernels[kernel]) self.pad = kernel_1d.shape[0] // 2 - 1 self.register_buffer("kernel", kernel_1d) def forward(self, hidden_states): hidden_states = F.pad(hidden_states, (self.pad,) * 2, self.pad_mode, data_format="NCL") weight = paddle.zeros([hidden_states.shape[1], hidden_states.shape[1], self.kernel.shape[0]]) indices = paddle.arange(hidden_states.shape[1]) weight[indices, indices] = self.kernel.cast(weight.dtype) return F.conv1d(hidden_states, weight, stride=2) class Upsample1d(nn.Layer): def __init__(self, kernel="linear", pad_mode="reflect"): super().__init__() self.pad_mode = pad_mode kernel_1d = paddle.to_tensor(_kernels[kernel]) * 2 self.pad = kernel_1d.shape[0] // 2 - 1 self.register_buffer("kernel", kernel_1d) def forward(self, hidden_states, temb=None): hidden_states = F.pad(hidden_states, ((self.pad + 1) // 2,) * 2, self.pad_mode, data_format="NCL") weight = paddle.zeros([hidden_states.shape[1], hidden_states.shape[1], self.kernel.shape[0]]) indices = paddle.arange(hidden_states.shape[1]) weight[indices, indices] = self.kernel.cast(weight.dtype) return F.conv1d_transpose(hidden_states, weight, stride=2, padding=self.pad * 2 + 1) class SelfAttention1d(nn.Layer): def __init__(self, in_channels, n_head=1, dropout_rate=0.0): super().__init__() self.channels = in_channels self.group_norm = nn.GroupNorm(1, num_channels=in_channels) self.num_heads = n_head self.query = nn.Linear(self.channels, self.channels) self.key = nn.Linear(self.channels, self.channels) self.value = nn.Linear(self.channels, self.channels) self.proj_attn = nn.Linear(self.channels, self.channels) self.dropout = nn.Dropout(dropout_rate) # (TODO junnyu) refactor self attention def transpose_for_scores(self, projection: paddle.Tensor) -> paddle.Tensor: new_projection_shape = projection.shape[:-1] + [self.num_heads, -1] # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D) new_projection = projection.reshape(new_projection_shape).transpose([0, 2, 1, 3]) return new_projection def forward(self, hidden_states): residual = hidden_states hidden_states = self.group_norm(hidden_states) hidden_states = hidden_states.transpose([0, 2, 1]) query_proj = self.query(hidden_states) key_proj = self.key(hidden_states) value_proj = self.value(hidden_states) query_states = self.transpose_for_scores(query_proj) key_states = self.transpose_for_scores(key_proj) value_states = self.transpose_for_scores(value_proj) scale = 1 / math.sqrt(math.sqrt(key_states.shape[-1])) attention_scores = paddle.matmul(query_states * scale, key_states * scale, transpose_y=True) attention_probs = F.softmax(attention_scores, axis=-1) # compute attention output hidden_states = paddle.matmul(attention_probs, value_states) hidden_states = hidden_states.transpose([0, 2, 1, 3]) new_hidden_states_shape = hidden_states.shape[:-2] + [ self.channels, ] hidden_states = hidden_states.reshape(new_hidden_states_shape) # compute next hidden_states hidden_states = self.proj_attn(hidden_states) hidden_states = hidden_states.transpose([0, 2, 1]) hidden_states = self.dropout(hidden_states) output = hidden_states + residual return output class ResConvBlock(nn.Layer): def __init__(self, in_channels, mid_channels, out_channels, is_last=False): super().__init__() self.is_last = is_last self.has_conv_skip = in_channels != out_channels if self.has_conv_skip: self.conv_skip = nn.Conv1D(in_channels, out_channels, 1, bias_attr=False) self.conv_1 = nn.Conv1D(in_channels, mid_channels, 5, padding=2) self.group_norm_1 = nn.GroupNorm(1, mid_channels) self.gelu_1 = nn.GELU() self.conv_2 = nn.Conv1D(mid_channels, out_channels, 5, padding=2) if not self.is_last: self.group_norm_2 = nn.GroupNorm(1, out_channels) self.gelu_2 = nn.GELU() def forward(self, hidden_states): residual = self.conv_skip(hidden_states) if self.has_conv_skip else hidden_states hidden_states = self.conv_1(hidden_states) hidden_states = self.group_norm_1(hidden_states) hidden_states = self.gelu_1(hidden_states) hidden_states = self.conv_2(hidden_states) if not self.is_last: hidden_states = self.group_norm_2(hidden_states) hidden_states = self.gelu_2(hidden_states) output = hidden_states + residual return output class UNetMidBlock1D(nn.Layer): def __init__(self, mid_channels, in_channels, out_channels=None): super().__init__() out_channels = in_channels if out_channels is None else out_channels # there is always at least one resnet self.down = Downsample1d("cubic") resnets = [ ResConvBlock(in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels), ] attentions = [ SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(out_channels, out_channels // 32), ] self.up = Upsample1d(kernel="cubic") self.attentions = nn.LayerList(attentions) self.resnets = nn.LayerList(resnets) def forward(self, hidden_states, temb=None): hidden_states = self.down(hidden_states) for attn, resnet in zip(self.attentions, self.resnets): hidden_states = resnet(hidden_states) hidden_states = attn(hidden_states) hidden_states = self.up(hidden_states) return hidden_states class AttnDownBlock1D(nn.Layer): def __init__(self, out_channels, in_channels, mid_channels=None): super().__init__() mid_channels = out_channels if mid_channels is None else mid_channels self.down = Downsample1d("cubic") resnets = [ ResConvBlock(in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels), ] attentions = [ SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(out_channels, out_channels // 32), ] self.attentions = nn.LayerList(attentions) self.resnets = nn.LayerList(resnets) def forward(self, hidden_states, temb=None): hidden_states = self.down(hidden_states) for resnet, attn in zip(self.resnets, self.attentions): hidden_states = resnet(hidden_states) hidden_states = attn(hidden_states) return hidden_states, (hidden_states,) class DownBlock1D(nn.Layer): def __init__(self, out_channels, in_channels, mid_channels=None): super().__init__() mid_channels = out_channels if mid_channels is None else mid_channels self.down = Downsample1d("cubic") resnets = [ ResConvBlock(in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels), ] self.resnets = nn.LayerList(resnets) def forward(self, hidden_states, temb=None): hidden_states = self.down(hidden_states) for resnet in self.resnets: hidden_states = resnet(hidden_states) return hidden_states, (hidden_states,) class DownBlock1DNoSkip(nn.Layer): def __init__(self, out_channels, in_channels, mid_channels=None): super().__init__() mid_channels = out_channels if mid_channels is None else mid_channels resnets = [ ResConvBlock(in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels), ] self.resnets = nn.LayerList(resnets) def forward(self, hidden_states, temb=None): hidden_states = paddle.concat([hidden_states, temb], axis=1) for resnet in self.resnets: hidden_states = resnet(hidden_states) return hidden_states, (hidden_states,) class AttnUpBlock1D(nn.Layer): def __init__(self, in_channels, out_channels, mid_channels=None): super().__init__() mid_channels = out_channels if mid_channels is None else mid_channels resnets = [ ResConvBlock(2 * in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels), ] attentions = [ SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(mid_channels, mid_channels // 32), SelfAttention1d(out_channels, out_channels // 32), ] self.attentions = nn.LayerList(attentions) self.resnets = nn.LayerList(resnets) self.up = Upsample1d(kernel="cubic") def forward(self, hidden_states, res_hidden_states_tuple, temb=None): res_hidden_states = res_hidden_states_tuple[-1] hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1) for resnet, attn in zip(self.resnets, self.attentions): hidden_states = resnet(hidden_states) hidden_states = attn(hidden_states) hidden_states = self.up(hidden_states) return hidden_states class UpBlock1D(nn.Layer): def __init__(self, in_channels, out_channels, mid_channels=None): super().__init__() mid_channels = in_channels if mid_channels is None else mid_channels resnets = [ ResConvBlock(2 * in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels), ] self.resnets = nn.LayerList(resnets) self.up = Upsample1d(kernel="cubic") def forward(self, hidden_states, res_hidden_states_tuple, temb=None): res_hidden_states = res_hidden_states_tuple[-1] hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1) for resnet in self.resnets: hidden_states = resnet(hidden_states) hidden_states = self.up(hidden_states) return hidden_states class UpBlock1DNoSkip(nn.Layer): def __init__(self, in_channels, out_channels, mid_channels=None): super().__init__() mid_channels = in_channels if mid_channels is None else mid_channels resnets = [ ResConvBlock(2 * in_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, mid_channels), ResConvBlock(mid_channels, mid_channels, out_channels, is_last=True), ] self.resnets = nn.LayerList(resnets) def forward(self, hidden_states, res_hidden_states_tuple, temb=None): res_hidden_states = res_hidden_states_tuple[-1] hidden_states = paddle.concat([hidden_states, res_hidden_states], axis=1) for resnet in self.resnets: hidden_states = resnet(hidden_states) return hidden_states def get_down_block(down_block_type, num_layers, in_channels, out_channels, temb_channels, add_downsample): if down_block_type == "DownResnetBlock1D": return DownResnetBlock1D( in_channels=in_channels, num_layers=num_layers, out_channels=out_channels, temb_channels=temb_channels, add_downsample=add_downsample, ) elif down_block_type == "DownBlock1D": return DownBlock1D(out_channels=out_channels, in_channels=in_channels) elif down_block_type == "AttnDownBlock1D": return AttnDownBlock1D(out_channels=out_channels, in_channels=in_channels) elif down_block_type == "DownBlock1DNoSkip": return DownBlock1DNoSkip(out_channels=out_channels, in_channels=in_channels) raise ValueError(f"{down_block_type} does not exist.") def get_up_block(up_block_type, num_layers, in_channels, out_channels, temb_channels, add_upsample): if up_block_type == "UpResnetBlock1D": return UpResnetBlock1D( in_channels=in_channels, num_layers=num_layers, out_channels=out_channels, temb_channels=temb_channels, add_upsample=add_upsample, ) elif up_block_type == "UpBlock1D": return UpBlock1D(in_channels=in_channels, out_channels=out_channels) elif up_block_type == "AttnUpBlock1D": return AttnUpBlock1D(in_channels=in_channels, out_channels=out_channels) elif up_block_type == "UpBlock1DNoSkip": return UpBlock1DNoSkip(in_channels=in_channels, out_channels=out_channels) raise ValueError(f"{up_block_type} does not exist.") def get_mid_block(mid_block_type, num_layers, in_channels, mid_channels, out_channels, embed_dim, add_downsample): if mid_block_type == "MidResTemporalBlock1D": return MidResTemporalBlock1D( num_layers=num_layers, in_channels=in_channels, out_channels=out_channels, embed_dim=embed_dim, add_downsample=add_downsample, ) elif mid_block_type == "ValueFunctionMidBlock1D": return ValueFunctionMidBlock1D(in_channels=in_channels, out_channels=out_channels, embed_dim=embed_dim) elif mid_block_type == "UNetMidBlock1D": return UNetMidBlock1D(in_channels=in_channels, mid_channels=mid_channels, out_channels=out_channels) raise ValueError(f"{mid_block_type} does not exist.") def get_out_block(*, out_block_type, num_groups_out, embed_dim, out_channels, act_fn, fc_dim): if out_block_type == "OutConv1DBlock": return OutConv1DBlock(num_groups_out, out_channels, embed_dim, act_fn) elif out_block_type == "ValueFunction": return OutValueFunctionBlock(fc_dim, embed_dim) return None