# import subprocess # import re # from typing import List, Tuple, Optional # command = ["python", "setup.py", "build_ext", "--inplace"] # result = subprocess.run(command, capture_output=True, text=True) # print("Output:\n", result.stdout) # print("Errors:\n", result.stderr) # if result.returncode == 0: # print("Command executed successfully.") # else: # print("Command failed with return code:", result.returncode) import datetime import gc import hashlib import math import multiprocessing as mp import os import threading import time os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "1" import shutil import ffmpeg from moviepy.editor import ImageSequenceClip import zipfile # import gradio as gr import torch import numpy as np import matplotlib.pyplot as plt from PIL import Image from sam2.build_sam import build_sam2 from sam2.sam2_image_predictor import SAM2ImagePredictor from sam2.build_sam import build_sam2_video_predictor import cv2 import uuid user_processes = {} PROCESS_TIMEOUT = datetime.timedelta(minutes=4) def reset(seg_tracker): if seg_tracker is not None: predictor, inference_state, image_predictor = seg_tracker predictor.reset_state(inference_state) del predictor del inference_state del image_predictor del seg_tracker gc.collect() torch.cuda.empty_cache() return None, ({}, {}), None, None, 0, None, None, None, 0 def extract_video_info(input_video): if input_video is None: return 4, 4, None, None, None, None, None cap = cv2.VideoCapture(input_video) fps = cap.get(cv2.CAP_PROP_FPS) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) cap.release() return fps, total_frames, None, None, None, None, None def get_meta_from_video(session_id, input_video, scale_slider, checkpoint): output_dir = f'/tmp/output_frames/{session_id}' output_masks_dir = f'/tmp/output_masks/{session_id}' output_combined_dir = f'/tmp/output_combined/{session_id}' clear_folder(output_dir) clear_folder(output_masks_dir) clear_folder(output_combined_dir) if input_video is None: return None, ({}, {}), None, None, (4, 1, 4), None, None, None, 0 cap = cv2.VideoCapture(input_video) fps = cap.get(cv2.CAP_PROP_FPS) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) cap.release() frame_interval = max(1, int(fps // scale_slider)) print(f"frame_interval: {frame_interval}") try: ffmpeg.input(input_video, hwaccel='cuda').output( os.path.join(output_dir, '%07d.jpg'), q=2, start_number=0, vf=rf'select=not(mod(n\,{frame_interval}))', vsync='vfr' ).run() except: print(f"ffmpeg cuda err") ffmpeg.input(input_video).output( os.path.join(output_dir, '%07d.jpg'), q=2, start_number=0, vf=rf'select=not(mod(n\,{frame_interval}))', vsync='vfr' ).run() first_frame_path = os.path.join(output_dir, '0000000.jpg') first_frame = cv2.imread(first_frame_path) first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB) torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__() if torch.cuda.get_device_properties(0).major >= 8: torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_tiny.pt" model_cfg = "sam2_hiera_t.yaml" if checkpoint == "samll": sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_small.pt" model_cfg = "sam2_hiera_s.yaml" elif checkpoint == "base-plus": sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_base_plus.pt" model_cfg = "sam2_hiera_b+.yaml" elif checkpoint == "large": sam2_checkpoint = "segment-anything-2/checkpoints/sam2_hiera_large.pt" model_cfg = "sam2_hiera_l.yaml" predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cuda") sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda") image_predictor = SAM2ImagePredictor(sam2_model) inference_state = predictor.init_state(video_path=output_dir) predictor.reset_state(inference_state) return (predictor, inference_state, image_predictor), ({}, {}), first_frame_rgb, first_frame_rgb, (fps, frame_interval, total_frames), None, None, None, 0 def mask2bbox(mask): if len(np.where(mask > 0)[0]) == 0: print(f'not mask') return np.array([0, 0, 0, 0]).astype(np.int64), False x_ = np.sum(mask, axis=0) y_ = np.sum(mask, axis=1) x0 = np.min(np.nonzero(x_)[0]) x1 = np.max(np.nonzero(x_)[0]) y0 = np.min(np.nonzero(y_)[0]) y1 = np.max(np.nonzero(y_)[0]) return np.array([x0, y0, x1, y1]).astype(np.int64), True def sam_stroke(session_id, seg_tracker, drawing_board, last_draw, frame_num, ann_obj_id): predictor, inference_state, image_predictor = seg_tracker image_path = f'/tmp/output_frames/{session_id}/{frame_num:07d}.jpg' image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) display_image = drawing_board["image"] image_predictor.set_image(image) input_mask = drawing_board["mask"] input_mask[input_mask != 0] = 255 if last_draw is not None: diff_mask = cv2.absdiff(input_mask, last_draw) input_mask = diff_mask bbox, hasMask = mask2bbox(input_mask[:, :, 0]) if not hasMask : return seg_tracker, display_image, display_image, None masks, scores, logits = image_predictor.predict( point_coords=None, point_labels=None, box=bbox[None, :], multimask_output=False,) mask = masks > 0.0 masked_frame = show_mask(mask, display_image, ann_obj_id) masked_with_rect = draw_rect(masked_frame, bbox, ann_obj_id) frame_idx, object_ids, masks = predictor.add_new_mask(inference_state, frame_idx=frame_num, obj_id=ann_obj_id, mask=mask[0]) last_draw = drawing_board["mask"] return seg_tracker, masked_with_rect, masked_with_rect, last_draw def draw_rect(image, bbox, obj_id): cmap = plt.get_cmap("tab10") color = np.array(cmap(obj_id)[:3]) rgb_color = tuple(map(int, (color[:3] * 255).astype(np.uint8))) inv_color = tuple(map(int, (255 - color[:3] * 255).astype(np.uint8))) x0, y0, x1, y1 = bbox image_with_rect = cv2.rectangle(image.copy(), (x0, y0), (x1, y1), rgb_color, thickness=2) return image_with_rect def sam_click(session_id, seg_tracker, frame_num, point_mode, click_stack, ann_obj_id, point): points_dict, labels_dict = click_stack predictor, inference_state, image_predictor = seg_tracker ann_frame_idx = frame_num # the frame index we interact with print(f'ann_frame_idx: {ann_frame_idx}') if point_mode == "Positive": label = np.array([1], np.int32) else: label = np.array([0], np.int32) if ann_frame_idx not in points_dict: points_dict[ann_frame_idx] = {} if ann_frame_idx not in labels_dict: labels_dict[ann_frame_idx] = {} if ann_obj_id not in points_dict[ann_frame_idx]: points_dict[ann_frame_idx][ann_obj_id] = np.empty((0, 2), dtype=np.float32) if ann_obj_id not in labels_dict[ann_frame_idx]: labels_dict[ann_frame_idx][ann_obj_id] = np.empty((0,), dtype=np.int32) points_dict[ann_frame_idx][ann_obj_id] = np.append(points_dict[ann_frame_idx][ann_obj_id], point, axis=0) labels_dict[ann_frame_idx][ann_obj_id] = np.append(labels_dict[ann_frame_idx][ann_obj_id], label, axis=0) click_stack = (points_dict, labels_dict) frame_idx, out_obj_ids, out_mask_logits = predictor.add_new_points( inference_state=inference_state, frame_idx=ann_frame_idx, obj_id=ann_obj_id, points=points_dict[ann_frame_idx][ann_obj_id], labels=labels_dict[ann_frame_idx][ann_obj_id], ) image_path = f'/tmp/output_frames/{session_id}/{ann_frame_idx:07d}.jpg' image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) masked_frame = image.copy() for i, obj_id in enumerate(out_obj_ids): mask = (out_mask_logits[i] > 0.0).cpu().numpy() masked_frame = show_mask(mask, image=masked_frame, obj_id=obj_id) masked_frame_with_markers = draw_markers(masked_frame, points_dict[ann_frame_idx], labels_dict[ann_frame_idx]) return seg_tracker, masked_frame_with_markers, masked_frame_with_markers, click_stack def draw_markers(image, points_dict, labels_dict): cmap = plt.get_cmap("tab10") image_h, image_w = image.shape[:2] marker_size = max(1, int(min(image_h, image_w) * 0.05)) for obj_id in points_dict: color = np.array(cmap(obj_id)[:3]) rgb_color = tuple(map(int, (color[:3] * 255).astype(np.uint8))) inv_color = tuple(map(int, (255 - color[:3] * 255).astype(np.uint8))) for point, label in zip(points_dict[obj_id], labels_dict[obj_id]): x, y = int(point[0]), int(point[1]) if label == 1: cv2.drawMarker(image, (x, y), inv_color, markerType=cv2.MARKER_CROSS, markerSize=marker_size, thickness=2) else: cv2.drawMarker(image, (x, y), inv_color, markerType=cv2.MARKER_TILTED_CROSS, markerSize=int(marker_size / np.sqrt(2)), thickness=2) return image def show_mask(mask, image=None, obj_id=None): cmap = plt.get_cmap("tab10") cmap_idx = 0 if obj_id is None else obj_id color = np.array([*cmap(cmap_idx)[:3], 0.6]) h, w = mask.shape[-2:] mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) mask_image = (mask_image * 255).astype(np.uint8) if image is not None: image_h, image_w = image.shape[:2] if (image_h, image_w) != (h, w): raise ValueError(f"Image dimensions ({image_h}, {image_w}) and mask dimensions ({h}, {w}) do not match") colored_mask = np.zeros_like(image, dtype=np.uint8) for c in range(3): colored_mask[..., c] = mask_image[..., c] alpha_mask = mask_image[..., 3] / 255.0 for c in range(3): image[..., c] = np.where(alpha_mask > 0, (1 - alpha_mask) * image[..., c] + alpha_mask * colored_mask[..., c], image[..., c]) return image return mask_image def show_res_by_slider(session_id, frame_per, click_stack): image_path = f'/tmp/output_frames/{session_id}' output_combined_dir = f'/tmp/output_combined/{session_id}' combined_frames = sorted([os.path.join(output_combined_dir, img_name) for img_name in os.listdir(output_combined_dir)]) if combined_frames: output_masked_frame_path = combined_frames else: original_frames = sorted([os.path.join(image_path, img_name) for img_name in os.listdir(image_path)]) output_masked_frame_path = original_frames total_frames_num = len(output_masked_frame_path) if total_frames_num == 0: print("No output results found") return None, None, 0 else: frame_num = math.floor(total_frames_num * frame_per / 100) if frame_per == 100: frame_num = frame_num - 1 chosen_frame_path = output_masked_frame_path[frame_num] print(f"{chosen_frame_path}") chosen_frame_show = cv2.imread(chosen_frame_path) chosen_frame_show = cv2.cvtColor(chosen_frame_show, cv2.COLOR_BGR2RGB) points_dict, labels_dict = click_stack if frame_num in points_dict and frame_num in labels_dict: chosen_frame_show = draw_markers(chosen_frame_show, points_dict[frame_num], labels_dict[frame_num]) return chosen_frame_show, chosen_frame_show, frame_num def clear_folder(folder_path): if os.path.exists(folder_path): shutil.rmtree(folder_path) os.makedirs(folder_path) def zip_folder(folder_path, output_zip_path): with zipfile.ZipFile(output_zip_path, 'w', zipfile.ZIP_STORED) as zipf: for root, _, files in os.walk(folder_path): for file in files: file_path = os.path.join(root, file) zipf.write(file_path, os.path.relpath(file_path, folder_path)) def tracking_objects(session_id, seg_tracker, frame_num, input_video): output_dir = f'/tmp/output_frames/{session_id}' output_masks_dir = f'/tmp/output_masks/{session_id}' output_combined_dir = f'/tmp/output_combined/{session_id}' output_files_dir = f'/tmp/output_files/{session_id}' output_video_path = f'{output_files_dir}/output_video.mp4' output_zip_path = f'{output_files_dir}/output_masks.zip' clear_folder(output_masks_dir) clear_folder(output_combined_dir) clear_folder(output_files_dir) video_segments = {} predictor, inference_state, image_predictor = seg_tracker for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(inference_state): video_segments[out_frame_idx] = { out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy() for i, out_obj_id in enumerate(out_obj_ids) } frame_files = sorted([f for f in os.listdir(output_dir) if f.endswith('.jpg')]) # for frame_idx in sorted(video_segments.keys()): for frame_file in frame_files: frame_idx = int(os.path.splitext(frame_file)[0]) frame_path = os.path.join(output_dir, frame_file) image = cv2.imread(frame_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) masked_frame = image.copy() if frame_idx in video_segments: for obj_id, mask in video_segments[frame_idx].items(): masked_frame = show_mask(mask, image=masked_frame, obj_id=obj_id) mask_output_path = os.path.join(output_masks_dir, f'{obj_id}_{frame_idx:07d}.png') cv2.imwrite(mask_output_path, show_mask(mask)) combined_output_path = os.path.join(output_combined_dir, f'{frame_idx:07d}.png') combined_image_bgr = cv2.cvtColor(masked_frame, cv2.COLOR_RGB2BGR) cv2.imwrite(combined_output_path, combined_image_bgr) if frame_idx == frame_num: final_masked_frame = masked_frame cap = cv2.VideoCapture(input_video) fps = cap.get(cv2.CAP_PROP_FPS) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) cap.release() # output_frames = int(total_frames * scale_slider) output_frames = len([name for name in os.listdir(output_combined_dir) if os.path.isfile(os.path.join(output_combined_dir, name)) and name.endswith('.png')]) out_fps = fps * output_frames / total_frames # ffmpeg.input(os.path.join(output_combined_dir, '%07d.png'), framerate=out_fps).output(output_video_path, vcodec='h264_nvenc', pix_fmt='yuv420p').run() # fourcc = cv2.VideoWriter_fourcc(*"mp4v") # out = cv2.VideoWriter(output_video_path, fourcc, out_fps, (frame_width, frame_height)) # for i in range(output_frames): # frame_path = os.path.join(output_combined_dir, f'{i:07d}.png') # frame = cv2.imread(frame_path) # out.write(frame) # out.release() image_files = [os.path.join(output_combined_dir, f'{i:07d}.png') for i in range(output_frames)] clip = ImageSequenceClip(image_files, fps=out_fps) clip.write_videofile(output_video_path, codec="libx264", fps=out_fps) zip_folder(output_masks_dir, output_zip_path) print("done") return final_masked_frame, final_masked_frame, output_video_path, output_video_path, output_zip_path def increment_ann_obj_id(ann_obj_id): ann_obj_id += 1 return ann_obj_id def drawing_board_get_input_first_frame(input_first_frame): return input_first_frame def process_video(queue, result_queue, session_id): seg_tracker = None click_stack = ({}, {}) frame_num = int(0) ann_obj_id =int(0) last_draw = None while True: task = queue.get() if task["command"] == "exit": print(f"Process for {session_id} exiting.") break elif task["command"] == "extract_video_info": input_video = task["input_video"] fps, total_frames, input_first_frame, drawing_board, output_video, output_mp4, output_mask = extract_video_info(input_video) result_queue.put({"fps": fps, "total_frames": total_frames, "input_first_frame": input_first_frame, "drawing_board": drawing_board, "output_video": output_video, "output_mp4": output_mp4, "output_mask": output_mask}) elif task["command"] == "get_meta_from_video": input_video = task["input_video"] scale_slider = task["scale_slider"] checkpoint = task["checkpoint"] seg_tracker, click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id = get_meta_from_video(session_id, input_video, scale_slider, checkpoint) result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "frame_per": frame_per, "output_video": output_video, "output_mp4": output_mp4, "output_mask": output_mask, "ann_obj_id": ann_obj_id}) elif task["command"] == "sam_stroke": drawing_board = task["drawing_board"] last_draw = task["last_draw"] frame_num = task["frame_num"] ann_obj_id = task["ann_obj_id"] seg_tracker, input_first_frame, drawing_board, last_draw = sam_stroke(session_id, seg_tracker, drawing_board, last_draw, frame_num, ann_obj_id) result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "last_draw": last_draw}) elif task["command"] == "sam_click": frame_num = task["frame_num"] point_mode = task["point_mode"] click_stack = task["click_stack"] ann_obj_id = task["ann_obj_id"] point = task["point"] seg_tracker, input_first_frame, drawing_board, last_draw = sam_click(session_id, seg_tracker, frame_num, point_mode, click_stack, ann_obj_id, point) result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "last_draw": last_draw}) elif task["command"] == "increment_ann_obj_id": ann_obj_id = task["ann_obj_id"] ann_obj_id = increment_ann_obj_id(ann_obj_id) result_queue.put({"ann_obj_id": ann_obj_id}) elif task["command"] == "drawing_board_get_input_first_frame": input_first_frame = task["input_first_frame"] input_first_frame = drawing_board_get_input_first_frame(input_first_frame) result_queue.put({"input_first_frame": input_first_frame}) elif task["command"] == "reset": seg_tracker, click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id = reset(seg_tracker) result_queue.put({"click_stack": click_stack, "input_first_frame": input_first_frame, "drawing_board": drawing_board, "frame_per": frame_per, "output_video": output_video, "output_mp4": output_mp4, "output_mask": output_mask, "ann_obj_id": ann_obj_id}) elif task["command"] == "show_res_by_slider": frame_per = task["frame_per"] click_stack = task["click_stack"] input_first_frame, drawing_board, frame_num = show_res_by_slider(session_id, frame_per, click_stack) result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "frame_num": frame_num}) elif task["command"] == "tracking_objects": frame_num = task["frame_num"] input_video = task["input_video"] input_first_frame, drawing_board, output_video, output_mp4, output_mask = tracking_objects(session_id, seg_tracker, frame_num, input_video) result_queue.put({"input_first_frame": input_first_frame, "drawing_board": drawing_board, "output_video": output_video, "output_mp4": output_mp4, "output_mask": output_mask}) else: print(f"Unknown command {task['command']} for {session_id}") result_queue.put("Unknown command") def start_process(session_id): if session_id not in user_processes: queue = mp.Queue() result_queue = mp.Queue() process = mp.Process(target=process_video, args=(queue, result_queue, session_id)) process.start() user_processes[session_id] = { "process": process, "queue": queue, "result_queue": result_queue, "last_active": datetime.datetime.now() } else: user_processes[session_id]["last_active"] = datetime.datetime.now() return user_processes[session_id]["queue"] # def clean_up_processes(session_id, init_clean = False): # now = datetime.datetime.now() # to_remove = [] # for s_id, process_info in user_processes.items(): # if (now - process_info["last_active"] > PROCESS_TIMEOUT) or (s_id == session_id and init_clean): # process_info["queue"].put({"command": "exit"}) # process_info["process"].terminate() # process_info["process"].join() # to_remove.append(s_id) # for s_id in to_remove: # del user_processes[s_id] # print(f"Cleaned up process for session {s_id}.") def monitor_and_cleanup_processes(): while True: now = datetime.datetime.now() to_remove = [] for session_id, process_info in user_processes.items(): if now - process_info["last_active"] > PROCESS_TIMEOUT: process_info["queue"].put({"command": "exit"}) process_info["process"].terminate() process_info["process"].join() to_remove.append(session_id) for session_id in to_remove: del user_processes[session_id] print(f"Automatically cleaned up process for session {session_id}.") time.sleep(10) def seg_track_app(): import gradio as gr def extract_session_id_from_request(request: gr.Request): session_id = hashlib.sha256(f'{request.client.host}:{request.client.port}'.encode('utf-8')).hexdigest() # cookies = request.kwargs["headers"].get('cookie', '') # session_id = None # if '_gid=' in cookies: # session_id = cookies.split('_gid=')[1].split(';')[0] # else: # session_id = str(uuid.uuid4()) print(f"session_id {session_id}") return session_id def handle_extract_video_info(session_id, input_video): # clean_up_processes(session_id, init_clean=True) if input_video == None: return 0, 0, None, None, None, None, None queue = start_process(session_id) result_queue = user_processes[session_id]["result_queue"] queue.put({"command": "extract_video_info", "input_video": input_video}) result = result_queue.get() fps = result.get("fps") total_frames = result.get("total_frames") input_first_frame = result.get("input_first_frame") drawing_board = result.get("drawing_board") output_video = result.get("output_video") output_mp4 = result.get("output_mp4") output_mask = result.get("output_mask") scale_slider = gr.Slider.update(minimum=1.0, maximum=fps, step=1.0, value=fps,) frame_per = gr.Slider.update(minimum= 0.0, maximum= total_frames / fps, step=1.0/fps, value=0.0,) return scale_slider, frame_per, input_first_frame, drawing_board, output_video, output_mp4, output_mask def handle_get_meta_from_video(session_id, input_video, scale_slider, checkpoint): # clean_up_processes(session_id) queue = start_process(session_id) result_queue = user_processes[session_id]["result_queue"] queue.put({"command": "get_meta_from_video", "input_video": input_video, "scale_slider": scale_slider, "checkpoint": checkpoint}) result = result_queue.get() input_first_frame = result.get("input_first_frame") drawing_board = result.get("drawing_board") (fps, frame_interval, total_frames) = result.get("frame_per") output_video = result.get("output_video") output_mp4 = result.get("output_mp4") output_mask = result.get("output_mask") ann_obj_id = result.get("ann_obj_id") frame_per = gr.Slider.update(minimum= 0.0, maximum= total_frames / fps, step=frame_interval / fps, value=0.0,) return input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id def handle_sam_stroke(session_id, drawing_board, last_draw, frame_num, ann_obj_id): # clean_up_processes(session_id) queue = start_process(session_id) result_queue = user_processes[session_id]["result_queue"] queue.put({"command": "sam_stroke", "drawing_board": drawing_board, "last_draw": last_draw, "frame_num": frame_num, "ann_obj_id": ann_obj_id}) result = result_queue.get() input_first_frame = result.get("input_first_frame") drawing_board = result.get("drawing_board") last_draw = result.get("last_draw") return input_first_frame, drawing_board, last_draw def handle_sam_click(session_id, frame_num, point_mode, click_stack, ann_obj_id, evt: gr.SelectData): # clean_up_processes(session_id) queue = start_process(session_id) result_queue = user_processes[session_id]["result_queue"] point = np.array([[evt.index[0], evt.index[1]]], dtype=np.float32) queue.put({"command": "sam_click", "frame_num": frame_num, "point_mode": point_mode, "click_stack": click_stack, "ann_obj_id": ann_obj_id, "point": point}) result = result_queue.get() input_first_frame = result.get("input_first_frame") drawing_board = result.get("drawing_board") last_draw = result.get("last_draw") return input_first_frame, drawing_board, last_draw def handle_increment_ann_obj_id(session_id, ann_obj_id): # clean_up_processes(session_id) queue = start_process(session_id) result_queue = user_processes[session_id]["result_queue"] queue.put({"command": "increment_ann_obj_id", "ann_obj_id": ann_obj_id}) result = result_queue.get() ann_obj_id = result.get("ann_obj_id") return ann_obj_id def handle_drawing_board_get_input_first_frame(session_id, input_first_frame): # clean_up_processes(session_id) queue = start_process(session_id) result_queue = user_processes[session_id]["result_queue"] queue.put({"command": "drawing_board_get_input_first_frame", "input_first_frame": input_first_frame}) result = result_queue.get() input_first_frame = result.get("input_first_frame") return input_first_frame def handle_reset(session_id): # clean_up_processes(session_id) queue = start_process(session_id) result_queue = user_processes[session_id]["result_queue"] queue.put({"command": "reset"}) result = result_queue.get() click_stack = result.get("click_stack") input_first_frame = result.get("input_first_frame") drawing_board = result.get("drawing_board") frame_per = result.get("frame_per") output_video = result.get("output_video") output_mp4 = result.get("output_mp4") output_mask = result.get("output_mask") ann_obj_id = result.get("ann_obj_id") return click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id def handle_show_res_by_slider(session_id, frame_per, click_stack): # clean_up_processes(session_id) queue = start_process(session_id) result_queue = user_processes[session_id]["result_queue"] queue.put({"command": "show_res_by_slider", "frame_per": frame_per, "click_stack": click_stack}) result = result_queue.get() input_first_frame = result.get("input_first_frame") drawing_board = result.get("drawing_board") frame_num = result.get("frame_num") return input_first_frame, drawing_board, frame_num def handle_tracking_objects(session_id, frame_num, input_video): # clean_up_processes(session_id) queue = start_process(session_id) result_queue = user_processes[session_id]["result_queue"] queue.put({"command": "tracking_objects", "frame_num": frame_num, "input_video": input_video}) result = result_queue.get() input_first_frame = result.get("input_first_frame") drawing_board = result.get("drawing_board") output_video = result.get("output_video") output_mp4 = result.get("output_mp4") output_mask = result.get("output_mask") return input_first_frame, drawing_board, output_video, output_mp4, output_mask ########################################################## ###################### Front-end ######################## ########################################################## css = """ #input_output_video video { max-height: 550px; max-width: 100%; height: auto; } """ app = gr.Blocks(css=css) with app: session_id = gr.State() app.load(extract_session_id_from_request, None, session_id) gr.Markdown( '''
MedSAM2 for Video Segmentation 🔥
MedSAM2-Segment Anything in Medical Images and Videos: Benchmark and Deployment
GitHub Paper 3D Slicer Plugin Video Tutorial Fine-tune SAM2
This API supports using box (generated by scribble) and point prompts for video segmentation with SAM2. Welcome to join our mailing list to get updates or send feedback.
  1. 1. Upload video file
  2. 2. Select model size and downsample frame rate and run Preprocess
  3. 3. Use Stroke to Box Prompt to draw box on the first frame or Point Prompt to click on the first frame.
  4.    Note: The bounding rectangle of the stroke should be able to cover the segmentation target.
  5. 4. Click Segment to get the segmentation result
  6. 5. Click Add New Object to add new object
  7. 6. Click Start Tracking to track objects in the video
  8. 7. Click Reset to reset the app
  9. 8. Download the video with segmentation results
We designed this API and 3D Slicer Plugin for medical image and video segmentation where the checkpoints are based on the original SAM2 models (https://github.com/facebookresearch/segment-anything-2). The image segmentation fine-tune code has been released on GitHub. The video fine-tuning code is under active development and will be released as well.
If you find these tools useful, please consider citing the following papers:
Ravi, N., Gabeur, V., Hu, Y.T., Hu, R., Ryali, C., Ma, T., Khedr, H., Rädle, R., Rolland, C., Gustafson, L., Mintun, E., Pan, J., Alwala, K.V., Carion, N., Wu, C.Y., Girshick, R., Dollár, P., Feichtenhofer, C.: SAM 2: Segment Anything in Images and Videos. arXiv:2408.00714 (2024)
Ma, J., Kim, S., Li, F., Baharoon, M., Asakereh, R., Lyu, H., Wang, B.: Segment Anything in Medical Images and Videos: Benchmark and Deployment. arXiv preprint arXiv:2408.03322 (2024)
Other useful resources: Official demo from MetaAI, Video tutorial from Piotr Skalski.
''' ) click_stack = gr.State(({}, {})) frame_num = gr.State(value=(int(0))) ann_obj_id = gr.State(value=(int(0))) last_draw = gr.State(None) with gr.Row(): with gr.Column(scale=0.5): with gr.Row(): tab_video_input = gr.Tab(label="Video input") with tab_video_input: input_video = gr.Video(label='Input video', type=["mp4", "mov", "avi"], elem_id="input_output_video") with gr.Row(): checkpoint = gr.Dropdown(label="Model Size", choices=["tiny", "small", "base-plus", "large"], value="tiny") scale_slider = gr.Slider( label="Downsampe Frame Rate (fps)", minimum=0.0, maximum=1.0, step=0.25, value=1.0, interactive=True ) preprocess_button = gr.Button( value="Preprocess", interactive=True, ) with gr.Row(): tab_stroke = gr.Tab(label="Stroke to Box Prompt") with tab_stroke: drawing_board = gr.Image(label='Drawing Board', tool="sketch", brush_radius=10, interactive=True) with gr.Row(): seg_acc_stroke = gr.Button(value="Segment", interactive=True) tab_click = gr.Tab(label="Point Prompt") with tab_click: input_first_frame = gr.Image(label='Segment result of first frame',interactive=True).style(height=550) with gr.Row(): point_mode = gr.Radio( choices=["Positive", "Negative"], value="Positive", label="Point Prompt", interactive=True) with gr.Row(): with gr.Column(): frame_per = gr.Slider( label = "Time (seconds)", minimum= 0.0, maximum= 100.0, step=0.01, value=0.0, ) new_object_button = gr.Button( value="Add New Object", interactive=True ) track_for_video = gr.Button( value="Start Tracking", interactive=True, ) reset_button = gr.Button( value="Reset", interactive=True, ) with gr.Column(scale=0.5): output_video = gr.Video(label='Visualize Results', elem_id="input_output_video") output_mp4 = gr.File(label="Predicted video") output_mask = gr.File(label="Predicted masks") with gr.Tab(label='Video examples'): gr.Examples( label="", examples=[ "assets/12fps_Dancing_cells_trimmed.mp4", "assets/clip_012251_fps5_07_25.mp4", "assets/FLARE22_Tr_0004.mp4", "assets/c_elegans_mov_cut_fps12.mp4", ], inputs=[input_video], ) gr.Examples( label="", examples=[ "assets/12fps_volvox_microcystis_play_trimmed.mp4", "assets/12fps_macrophages_phagocytosis.mp4", "assets/12fps_worm_eats_organism_5.mp4", "assets/12fps_worm_eats_organism_6.mp4", "assets/12fps_02_cups.mp4", ], inputs=[input_video], ) gr.Markdown( '''
The authors of this work highly appreciate Meta AI for making SAM2 publicly available to the community. The interface was built on SegTracker, which is also an amazing tool for video segmentation tracking. Data source
''' ) ########################################################## ###################### back-end ######################### ########################################################## # listen to the preprocess button click to get the first frame of video with scaling preprocess_button.click( fn=handle_get_meta_from_video, inputs=[ session_id, input_video, scale_slider, checkpoint ], outputs=[ input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id ] ) frame_per.release( fn=handle_show_res_by_slider, inputs=[ session_id, frame_per, click_stack ], outputs=[ input_first_frame, drawing_board, frame_num ] ) # Interactively modify the mask acc click input_first_frame.select( fn=handle_sam_click, inputs=[ session_id, frame_num, point_mode, click_stack, ann_obj_id ], outputs=[ input_first_frame, drawing_board, click_stack ] ) # Track object in video track_for_video.click( fn=handle_tracking_objects, inputs=[ session_id, frame_num, input_video, ], outputs=[ input_first_frame, drawing_board, output_video, output_mp4, output_mask ] ) reset_button.click( fn=handle_reset, inputs=[session_id], outputs=[ click_stack, input_first_frame, drawing_board, frame_per, output_video, output_mp4, output_mask, ann_obj_id ] ) new_object_button.click( fn=handle_increment_ann_obj_id, inputs=[ session_id, ann_obj_id ], outputs=[ ann_obj_id ] ) tab_stroke.select( fn=handle_drawing_board_get_input_first_frame, inputs=[session_id, input_first_frame], outputs=[drawing_board,], ) seg_acc_stroke.click( fn=handle_sam_stroke, inputs=[ session_id, drawing_board, last_draw, frame_num, ann_obj_id ], outputs=[ input_first_frame, drawing_board, last_draw ] ) input_video.change( fn=handle_extract_video_info, inputs=[session_id, input_video], outputs=[scale_slider, frame_per, input_first_frame, drawing_board, output_video, output_mp4, output_mask] ) app.queue(concurrency_count=1) app.launch(debug=True, enable_queue=True, share=False) if __name__ == "__main__": mp.set_start_method("spawn") monitor_thread = threading.Thread(target=monitor_and_cleanup_processes) monitor_thread.daemon = True monitor_thread.start() seg_track_app()