import gradio as gr from transformers import pipeline model_id = "juliensimon/xlm-v-base-language-id" p = pipeline("text-classification", model=model_id) def process(text, top_k=5): pred = p(text, top_k=top_k) scores = {x["label"]: x["score"] for x in pred} print(scores) return scores # Gradio inputs input_text = gr.Text(label="Enter text") # Gradio outputs labels = gr.Label(label="Languages", num_top_classes=5) description = "This Space lets you perform language identification on the 102 languages present in the google/fleurs dataset." iface = gr.Interface( description=description, fn=process, inputs=input_text, outputs=labels, examples=[], allow_flagging="never", ) iface.launch()