import os os.system("python3 -m pip install -e .") import gradio as gr import note_seq from inferencemodel import InferenceModel from utils import upload_audio SAMPLE_RATE = 16000 SF2_PATH = 'SGM-v2.01-Sal-Guit-Bass-V1.3.sf2' # Start inference model inference_model = InferenceModel('/home/user/app/checkpoints/mt3/', 'mt3') def inference(audio): with open(audio, 'rb') as fd: contents = fd.read() audio = upload_audio(contents,sample_rate=16000) est_ns = inference_model(audio) note_seq.sequence_proto_to_midi_file(est_ns, './transcribed.mid') return './transcribed.mid' title = "MT3" description = "Gradio demo for MT3: Multi-Task Multitrack Music Transcription. To use it, simply upload your audio file, or click one of the examples to load them. Read more at the links below." article = "

MT3: Multi-Task Multitrack Music Transcription | Github Repo

" examples=[['download.wav']] gr.Interface( inference, gr.inputs.Audio(type="filepath", label="Input"), [gr.outputs.File(label="Output")], title=title, description=description, article=article, examples=examples, ).launch().queue()