from contextlib import nullcontext import gradio as gr import torch from torch import autocast from diffusers import DiffusionPipeline import streamlit as st from transformers import ( pipeline, MBart50TokenizerFast, MBartForConditionalGeneration, ) device = "cuda" if torch.cuda.is_available() else "cpu" device_dict = {"cuda": 0, "cpu": -1} context = autocast if device == "cuda" else nullcontext dtype = torch.float16 if device == "cuda" else torch.float32 # Add language detection pipeline language_detection_model_ckpt = "papluca/xlm-roberta-base-language-detection" language_detection_pipeline = pipeline("text-classification", model=language_detection_model_ckpt, device=device_dict[device]) # Add model for language translation trans_tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-one-mmt") trans_model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-one-mmt").to(device) model_id = "CompVis/stable-diffusion-v1-4" pipe = DiffusionPipeline.from_pretrained( model_id, custom_pipeline="multilingual_stable_diffusion", use_auth_token=st.secrets["USER_TOKEN"], detection_pipeline=language_detection_pipeline, translation_model=trans_model, translation_tokenizer=trans_tokenizer, revision="fp16", torch_dtype=dtype, ) pipe = pipe.to(device) #torch.backends.cudnn.benchmark = True num_samples = 2 def infer(prompt, scale, steps): with context("cuda"): images = pipe(num_samples*[prompt], guidance_scale=scale, num_inference_steps=steps).images return images css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: black; background: black; } input[type='range'] { accent-color: black; } .dark input[type='range'] { accent-color: #dfdfdf; } .container { max-width: 730px; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } #container-advanced-btns{ display: flex; flex-wrap: wrap; justify-content: space-between; align-items: center; } .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; } #share-btn * { all: unset; } .gr-form{ flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; } #prompt-container{ gap: 0; } #generated_id{ min-height: 700px } """ block = gr.Blocks(css=css) examples = [ [ 'Una casa en la playa en un atardecer lluvioso', 45, 7.5, ], [ 'Ein Hund, der Orange isst', 45, 7.5, ], [ "Photo d'un restaurant parisien", 45, 7.5, ], ] with block as demo: gr.HTML( """
Stable Diffusion Pipeline that supports prompts in 50 different languages.