spaces-ship / app.py
jsulz's picture
jsulz HF staff
doing some cleanup
cf4323e
raw
history blame
16.7 kB
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
from datasets import load_dataset
def load_transform_data():
"""
Load and transform data from a parquet file.
Returns:
pandas.DataFrame: Transformed dataframe.
"""
spaces_dataset = 'jsulz/space-stats'
dataset = load_dataset(spaces_dataset)
df = dataset['train'].to_pandas()
# combine the sdk and tags columns, one of which is a string and the other is an array of strings
df["sdk"] = df["sdk"].apply(lambda x: np.array([str(x)]))
df["licenses"] = df["license"].apply(
lambda x: np.array([str(x)]) if x is None else x
)
# then combine the sdk and tags columns so that their elements are together
df["sdk_tags"] = df[["sdk", "tags"]].apply(
lambda x: np.concatenate((x.iloc[0], x.iloc[1])), axis=1
)
# Fill the NaN values with an empty string
df['emoji'] = np.where(df['emoji'].isnull(), '', df['emoji'])
# where the custom_domains column is not null, use that as the url, otherwise, use the host column
df["url"] = np.where(
df["custom_domains"].isnull(),
df["id"],
df["custom_domains"],
)
# Build up a pretty url that's clickable with the emoji
df["url"] = df[["url", "emoji"]].apply(
lambda x: (
f"<a target='_blank' href=https://huggingface.co/spaces/{x.iloc[0]}>{str(x.iloc[1]) + " " + x.iloc[0]}</a>"
if x.iloc[0] is not None and "/" in x.iloc[0]
else f"<a target='_blank' href=https://{x.iloc[0][0]}>{str(x.iloc[1]) + " " + x.iloc[0][0]}</a>"
),
axis=1,
)
# Prep the models, datasets, and licenses columns for display
df["r_models"] = [
", ".join(models) if models is not None else "" for models in df["models"]
]
df["r_sdk_tags"] = [
", ".join(sdk_tags) if sdk_tags is not None else ""
for sdk_tags in df["sdk_tags"]
]
df["r_datasets"] = [
", ".join(datasets) if datasets is not None else ""
for datasets in df["datasets"]
]
df["r_licenses"] = [
", ".join(licenses) if licenses is not None else ""
for licenses in df["licenses"]
]
return df
def filtered_df(
filtered_emojis,
filtered_likes,
filtered_author,
filtered_hardware,
filtered_tags,
filtered_models,
filtered_datasets,
space_licenses,
):
"""
Filter the dataframe based on the given criteria.
Args:
filtered_emojis (list): List of emojis to filter the dataframe by.
filtered_likes (int): Minimum number of likes to filter the dataframe by.
filtered_author (list): List of authors to filter the dataframe by.
filtered_hardware (list): List of hardware to filter the dataframe by.
filtered_tags (list): List of tags to filter the dataframe by.
filtered_models (list): List of models to filter the dataframe by.
filtered_datasets (list): List of datasets to filter the dataframe by.
space_licenses (list): List of licenses to filter the dataframe by.
Returns:
pandas.DataFrame: Filtered dataframe with the following columns: "URL", "Likes", "Models", "Datasets", "Licenses".
"""
_df = df
if filtered_emojis:
_df = _df[_df["emoji"].isin(filtered_emojis)]
if filtered_likes:
_df = _df[_df["likes"] >= filtered_likes]
if filtered_author:
_df = _df[_df["author"].isin(filtered_author)]
if filtered_hardware:
_df = _df[_df["hardware"].isin(filtered_hardware)]
if filtered_tags:
_df = _df[
_df["sdk_tags"].apply(lambda x: any(tag in x for tag in filtered_tags))
]
if filtered_models:
_df = _df[
_df["models"].apply(
lambda x: (
any(model in x for model in filtered_models)
if x is not None
else False
)
)
]
if filtered_datasets:
_df = _df[
_df["datasets"].apply(
lambda x: (
any(dataset in x for dataset in filtered_datasets)
if x is not None
else False
)
)
]
if space_licenses:
_df = _df[
_df["licenses"].apply(
lambda x: (
any(space_license in x for space_license in space_licenses)
if x is not None
else False
)
)
]
# rename the columns names to make them more readable
_df = _df.rename(
columns={
"url": "URL",
"likes": "Likes",
"r_models": "Models",
"r_datasets": "Datasets",
"r_licenses": "Licenses",
}
)
return _df[["URL", "Likes", "Models", "Datasets", "Licenses"]]
def count_items(items):
"""
Count the occurrences of items and authors in a given list of items.
Parameters:
items (dataframe column): A dataframe column containing a list of items.
Returns:
tuple: A tuple containing two dictionaries. The first dictionary contains the count of each item,
and the second dictionary contains the count of each author.
"""
items = np.concatenate([arr for arr in items.values if arr is not None])
item_count = {}
item_author_count = {}
for item in items:
if item in item_count:
item_count[item] += 1
else:
item_count[item] = 1
author = item.split('/')[0]
if author in item_author_count:
item_author_count[author] += 1
else:
item_author_count[author] = 1
return item_count, item_author_count
def flatten_column(_df, column):
"""
Flattens a column in a DataFrame.
Args:
_df (pandas.DataFrame): The DataFrame containing the column.
column (str): The name of the column to flatten.
Returns:
list: A list of unique values from the flattened column.
"""
column_to_list = _df[column].apply(
lambda x: np.array(["None"]) if np.ndim(x) == 0 else x
)
flattened = np.concatenate(column_to_list.values)
uniques = np.unique(flattened)
return uniques.tolist()
with gr.Blocks(fill_width=True) as demo:
df = load_transform_data()
with gr.Tab(label="Spaces Overview"):
# The Pandas dataframe has a datetime column. Plot the growth of spaces (row entries) over time.
# The x-axis should be the date and the y-axis should be the cumulative number of spaces created up to that date .
df = df.sort_values("created_at")
df['cumulative_spaces'] = df['created_at'].rank(method='first').astype(int)
fig1 = px.line(
df,
x="created_at",
y="cumulative_spaces",
title="Growth of Spaces Over Time",
labels={"created_at": "Date", "cumulative_spaces": "Number of Spaces"},
template="plotly_dark",
)
gr.Plot(fig1)
with gr.Row():
# Create a pie charge showing the distribution of spaces by SDK
fig2 = px.pie(df, names='sdk', title='Distribution of Spaces by SDK', template='plotly_dark')
gr.Plot(fig2)
# create a pie chart showing the distribution of spaces by emoji for the top 10 used emojis
emoji_counts = df['emoji'].value_counts().head(10).reset_index()
fig3 = px.pie(emoji_counts, names='emoji', values='count', title='Distribution of Spaces by Emoji', template='plotly_dark')
gr.Plot(fig3)
# Create a scatter plot showing the relationship between the number of likes and the number of spaces created by an author
author_likes = df.groupby('author').agg({'likes': 'sum', 'id': 'count'}).reset_index()
fig4 = px.scatter(
author_likes,
x="id",
y="likes",
title="Relationship between Number of Spaces Created and Number of Likes",
labels={"id": "Number of Spaces Created", "likes": "Number of Likes"},
hover_data={"author": True},
template="plotly_dark",
)
gr.Plot(fig4)
# Create a scatter plot showing the relationship between the number of likes and the number of spaces created by an author
emoji_likes = df.groupby('emoji').agg({'likes': 'sum', 'id': 'count'}).sort_values(by='likes', ascending=False).head(20).reset_index()
fig10 = px.scatter(
emoji_likes,
x="id",
y="likes",
title="Relationship between Emoji and Number of Likes",
labels={"id": "Number of Spaces Created", "likes": "Number of Likes"},
hover_data={"emoji": True},
template="plotly_dark",
)
gr.Plot(fig10)
# Create a bar chart of hardware in use
hardware = df['hardware'].value_counts().reset_index()
hardware.columns = ['Hardware', 'Number of Spaces']
fig5 = px.bar(
hardware,
x="Hardware",
y="Number of Spaces",
title="Hardware in Use",
labels={
"Hardware": "Hardware",
"Number of Spaces": "Number of Spaces (log scale)",
},
color="Hardware",
template="plotly_dark",
)
fig5.update_layout(yaxis_type="log")
gr.Plot(fig5)
model_count, model_author_count = count_items(df['models'])
model_author_count = pd.DataFrame(model_author_count.items(), columns=['Model Author', 'Number of Spaces'])
fig8 = px.bar(
model_author_count.sort_values("Number of Spaces", ascending=False).head(
20
),
x="Model Author",
y="Number of Spaces",
title="Most Popular Model Authors",
labels={"Model": "Model", "Number of Spaces": "Number of Spaces"},
template="plotly_dark",
)
gr.Plot(fig8)
model_count = pd.DataFrame(model_count.items(), columns=['Model', 'Number of Spaces'])
# then make a bar chart
fig6 = px.bar(
model_count.sort_values("Number of Spaces", ascending=False).head(20),
x="Model",
y="Number of Spaces",
title="Most Used Models",
labels={"Model": "Model", "Number of Spaces": "Number of Spaces"},
template="plotly_dark",
)
gr.Plot(fig6)
dataset_count, dataset_author_count = count_items(df['datasets'])
dataset_count = pd.DataFrame(dataset_count.items(), columns=['Datasets', 'Number of Spaces'])
dataset_author_count = pd.DataFrame(dataset_author_count.items(), columns=['Dataset Author', 'Number of Spaces'])
fig9 = px.bar(
dataset_author_count.sort_values("Number of Spaces", ascending=False).head(
20
),
x="Dataset Author",
y="Number of Spaces",
title="Most Popular Dataset Authors",
labels={
"Dataset Author": "Dataset Author",
"Number of Spaces": "Number of Spaces",
},
template="plotly_dark",
)
gr.Plot(fig9)
# then make a bar chart
fig7 = px.bar(
dataset_count.sort_values("Number of Spaces", ascending=False).head(20),
x="Datasets",
y="Number of Spaces",
title="Most Used Datasets",
labels={"Datasets": "Datasets", "Number of Spaces": "Number of Spaces"},
template="plotly_dark",
)
gr.Plot(fig7)
with gr.Row():
# Get the most duplicated spaces
duplicated_spaces = df['duplicated_from'].value_counts().head(20).reset_index()
duplicated_spaces["duplicated_from"] = duplicated_spaces[
"duplicated_from"
].apply(
lambda x: f"<a target='_blank' href=https://huggingface.co/spaces/{x}>{x}</a>"
)
duplicated_spaces.columns = ["Space", "Number of Duplicates"]
gr.DataFrame(duplicated_spaces, datatype="html" )
# Get the most liked spaces
liked_spaces = df[['id', 'likes']].sort_values(by='likes', ascending=False).head(20)
liked_spaces["id"] = liked_spaces["id"].apply(
lambda x: f"<a target='_blank' href=https://huggingface.co/spaces/{x}>{x}</a>"
)
liked_spaces.columns = ['Space', 'Number of Likes']
gr.DataFrame(liked_spaces, datatype="html")
with gr.Row():
# Create a dataframe with the top 10 authors and the number of spaces they have created
author_counts = df['author'].value_counts().head(20).reset_index()
author_counts["author"] = author_counts["author"].apply(
lambda x: f"<a target='_blank' href=https://huggingface.co/{x}>{x}</a>"
)
author_counts.columns = ["Author", "Number of Spaces"]
gr.DataFrame(author_counts, datatype="html")
# create a dataframe where we groupby author and sum their likes
author_likes = df.groupby('author').agg({'likes': 'sum'}).reset_index()
author_likes = author_likes.sort_values(by='likes', ascending=False).head(20)
author_likes["author"] = author_likes["author"].apply(
lambda x: f"<a target='_blank' href=https://huggingface.co/{x}>{x}</a>"
)
author_likes.columns = ["Author", "Number of Likes"]
gr.DataFrame(author_likes, datatype="html")
with gr.Tab(label="Spaces Search"):
df = df[df['stage'] == 'RUNNING']
# Layout
with gr.Row():
emoji = gr.Dropdown(
df["emoji"].unique().tolist(), label="Search by Emoji 🤗", multiselect=True
) # Dropdown to select the emoji
likes = gr.Slider(
minimum=df["likes"].min(),
maximum=df["likes"].max(),
step=1,
label="Filter by Likes",
) # Slider to filter by likes
with gr.Row():
author = gr.Dropdown(
df["author"].unique().tolist(), label="Search by Author", multiselect=True
)
# get the list of unique strings in the sdk_tags column
sdk_tags = np.unique(np.concatenate(df["sdk_tags"].values))
# create a dropdown for the sdk_tags
sdk_tags = gr.Dropdown(
sdk_tags.tolist(), label="Filter by SDK/Tags", multiselect=True
)
with gr.Row():
# create a gradio checkbox group for hardware
hardware = gr.CheckboxGroup(
df["hardware"].unique().tolist(), label="Filter by Hardware"
)
licenses = np.unique(np.concatenate(df["licenses"].values))
space_license = gr.Dropdown(licenses.tolist(), label="Filter by license")
with gr.Row():
models = gr.Dropdown(
flatten_column(df, "models"),
label="Search by Model",
multiselect=True,
)
datasets = gr.Dropdown(
flatten_column(df, "datasets"),
label="Search by Dataset",
multiselect=True,
)
clear = gr.ClearButton(components=[
emoji,
author,
hardware,
sdk_tags,
models,
datasets,
space_license
])
df = pd.DataFrame(
df[
[
"id",
"emoji",
"author",
"url",
"likes",
"hardware",
"sdk_tags",
"models",
"datasets",
"licenses",
"r_sdk_tags",
"r_models",
"r_datasets",
"r_licenses",
]
]
)
gr.DataFrame(
filtered_df,
inputs=[
emoji,
likes,
author,
hardware,
sdk_tags,
models,
datasets,
space_license,
],
datatype="html",
wrap=True,
column_widths=["25%", "5%", "25%", "25%", "20%"]
)
demo.launch()