import gradio as gr import numpy as np from PIL import Image import requests import xgboost import hopsworks import joblib project = hopsworks.login() fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("titanic_modal", version=3) model_dir = model.download() model = joblib.load(model_dir + "/titanic_model.pkl") def iris(Pclass, Sex, SibSp, Parch, Embarked, Age, Fare_type): input_list = [] input_list.append(Pclass) ############################## if Sex=='male': input_list.append(1) else: input_list.append(0) ############################## input_list.append(SibSp) input_list.append(Parch) ############################## if Embarked=='S': input_list.append(0) elif Embarked=='C': input_list.append(1) else: input_list.append(2) ############################## ############################## if Age <= 12: one_hot_age = [1, 0, 0, 0] for i in one_hot_age: input_list.append(i) elif Age <= 19: one_hot_age = [0, 1, 0, 0] for i in one_hot_age: input_list.append(i) elif Age <= 39: one_hot_age = [0, 0, 1, 0] for i in one_hot_age: input_list.append(i) else: one_hot_age = [0, 0, 0, 1] for i in one_hot_age: input_list.append(i) ############################## ############################## if Fare_type == "low": one_hot_fare = [1, 0, 0, 0] for i in one_hot_fare: input_list.append(i) elif Fare_type == "medium-low": one_hot_fare = [0, 1, 0, 0] for i in one_hot_fare: input_list.append(i) elif Fare_type == "medium": one_hot_fare = [0, 0, 1, 0] for i in one_hot_fare: input_list.append(i) else: one_hot_fare = [0, 0, 0, 1] for i in one_hot_fare: input_list.append(i) ############################## # 'res' is a list of predictions returned as the label. res = model.predict(np.asarray(input_list).reshape(1, -1)) # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # the first element. if res[0] == 0: img_string = "dead" else: img_string = "survived" passenger_url = "https://raw.githubusercontent.com/santroma1/id2223_lab1_titanic/main/assets/" + img_string + ".jpg" img = Image.open(requests.get(passenger_url, stream=True).raw) return img demo = gr.Interface( fn=iris, title="Titanic Predictive Analytics", description="Experiment to predict whether a passanger survived or not.", allow_flagging="never", inputs=[ gr.inputs.Number(default=1.0, label="Cabin class (1, 2, 3)"), gr.Textbox(default='male', label="Sex (male, female)"), gr.inputs.Number(default=1.0, label="SibSp (number of siblings/spouses aboard)"), gr.inputs.Number(default=1.0, label="Parch (number of parents/children aboard)"), gr.Textbox(default="S", label="Port of Embarkation (C = Cherbourg, Q = Queenstown, S = Southampton)"), gr.inputs.Number(default=1.0, label="Age"), gr.Textbox(default="low", label="Fare_type (low, medium-low, medium, high)"), ], outputs=gr.Image(type="pil")) demo.launch()