import gradio as gr from phi.assistant import Assistant from phi.llm.openai import OpenAIChat from phi.llm.groq import Groq from phi.llm.ollama import Ollama from phi.tools.duckduckgo import DuckDuckGo # 模型字典 model_choices = { "OpenAI Model (gpt-3.5-turbo)": { "class": OpenAIChat, "params": { "model": "gpt-3.5-turbo" } }, "Groq Model (llama3-70b-8192)": { "class": Groq, "params": { "model": "llama3-70b-8192" } }, "Ollama Model (llama3)": { "class": Ollama, "params": { "model": "llama3" } } } def ai_search(api_key, model_choice, base_url, query): if model_choice in ["OpenAI Model (gpt-3.5-turbo)", "Groq Model (llama3-70b-8192)"] and not api_key: return "API key is required." if model_choice == "OpenAI Model (gpt-3.5-turbo)" and not base_url: return "Base URL is required for OpenAI Model." # 动态创建模型实例 model_info = model_choices[model_choice] llm_class = model_info["class"] llm_params = model_info["params"] if model_choice != "Ollama Model (llama3)": llm_params["api_key"] = api_key if model_choice == "OpenAI Model (gpt-3.5-turbo)": llm_params["base_url"] = base_url llm_instance = llm_class(**llm_params) # 创建 Assistant 实例 assistant = Assistant(llm=llm_instance, tools=[DuckDuckGo()], show_tool_calls=True) # 使用 DuckDuckGo 进行搜索 search_results_generator = assistant.run(f"Search: {query}") if not search_results_generator: return "No results found." # 迭代生成器并合并结果 search_results = "".join(list(search_results_generator)) # 打印搜索结果以检查其结构 print(search_results) # 格式化搜索结果为 Markdown markdown_results = f"### Search Results for: {query}\n\n" markdown_results += "Here are some results:\n\n" markdown_results += f"{search_results}\n" return markdown_results def create_interface(): with gr.Blocks() as iface: gr.Markdown("## AI Search Engine") model_choice_input = gr.Dropdown(label="Choose Model", choices=list(model_choices.keys())) api_key_input = gr.Textbox(label="API Key", placeholder="Enter your API key here", type="password", visible=False) base_url_input = gr.Textbox(label="Base URL", placeholder="Enter the base URL here", visible=False) query_input = gr.Textbox(label="Search Query", placeholder="Enter your search query here") search_button = gr.Button("Search", interactive=False) output = gr.Textbox(label="Response", interactive=False) def update_inputs(model_choice): if model_choice == "OpenAI Model (gpt-3.5-turbo)": return gr.update(visible=True), gr.update(visible=True), "", "" elif model_choice == "Groq Model (llama3-70b-8192)": return gr.update(visible=True), gr.update(visible=False), "", "" else: return gr.update(visible=False), gr.update(visible=False), "", "" def check_button_state(api_key, base_url, model_choice, query): # print(api_key) # print(base_url) # print(model_choice) # if model_choice == "Ollama Model (llama3)": # return gr.update(interactive=bool(query)) # elif model_choice == "Groq Model (llama3-70b-8192)": # return gr.update(interactive=True) # elif model_choice == "OpenAI Model (gpt-3.5-turbo)": # return gr.update(interactive=bool(api_key and base_url and query)) # else: # return gr.update(interactive=True) return gr.update(interactive=True) def combined_update(model_choice, api_key, base_url, query): updates = update_inputs(model_choice) button_state = check_button_state(api_key, base_url, model_choice, query) return updates + (button_state,) model_choice_input.change( lambda model_choice: combined_update(model_choice, api_key_input.value, base_url_input.value, query_input.value), inputs=model_choice_input, outputs=[api_key_input, base_url_input, api_key_input, base_url_input, search_button] ) api_key_input.change( lambda api_key: check_button_state(api_key, base_url_input.value, model_choice_input.value, query_input.value), inputs=api_key_input, outputs=search_button ) base_url_input.change( lambda base_url: check_button_state(api_key_input.value, base_url, model_choice_input.value, query_input.value), inputs=base_url_input, outputs=search_button ) query_input.change( lambda query: check_button_state(api_key_input.value, base_url_input.value, model_choice_input.value, query), inputs=query_input, outputs=search_button ) search_button.click( fn=ai_search, inputs=[api_key_input, model_choice_input, base_url_input, query_input], outputs=output ) return iface iface = create_interface() iface.launch()