import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from shiny import App, render, ui
import pandas as pd
# Initialize the sentence transformer model
model = SentenceTransformer('all-MiniLM-L6-v2')
# Sample queries
#queries = [
# "What is the weather today?",
# "How to learn Python?",
# "Best practices for data science.",
# "What is the capital of France?",
# "How to cook pasta?",
# ... (other queries)
#]
dataframe_sessions = pd.read_excel("egu_session_descriptions.xlsx")
dataframe_sessions = dataframe_sessions.dropna(subset=['ID'])
queries = dataframe_sessions.Description
titles = dataframe_sessions.Title
ids = dataframe_sessions.ID
ids = [int(num) for num in ids]
prefix = "https://meetingorganizer.copernicus.org/EGU25/session/"
# Create a new list with the URL prefix added to each number
urls = [f"{prefix}{num}" for num in ids]
# The column to display as results
# Precompute embeddings for the queries
query_embeddings = model.encode(queries)
# Define the UI
app_ui = ui.page_fluid(
#ui.h3("EGU25 AI-session recommender", style = "margin-bottom: 80px; color: blue; background-color: lightgrey;"),
ui.h3(
"EGU25 Topic Similarity Adviser: experimental tool ",
style="margin-bottom: 60px; color: #2A9DF4; font-weight: bold; background-color: #F2F2F2; padding: 15px; border-radius: 8px; text-align: center;"),
ui.card(
ui.card_header("How to use"),
ui.HTML("This experimental tool may help you find the most suitable session to submit to for the European Geosciences Union General Assembly 2025 by analysing the content of your abstract. Using advanced Natural Language Processing (NLP), it calculates how closely your abstract text matches each available session, across all disciplines and Programme Groups. The EGU25 topic similarity adviser is available until 13 January, 2025 13:00 CET.
Rest assured: your data are not stored or documented in any way. ")),
ui.input_text_area("user_input", "", placeholder="Paste abstract", width = "100%"),
ui.input_action_button("submit", "Get Session Suggestions ", class_="btn btn-primary"),
ui.HTML("