import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM # Load the model and tokenizer model_name = "mistralai/mathstral-7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) st.title("Mathstral-7B Assistant for Physics, Engineering, and Mathematics") st.write("Enter your question related to physics, engineering, or mathematics:") prompt = st.text_area("Question:", "Example: Calculate the force on an object with mass 10 kg and acceleration 2 m/s².") max_length = st.sidebar.slider("Max Response Length", min_value=10, max_value=200, value=100) if st.button("Generate Response"): with st.spinner("Generating response..."): full_prompt = f"Assistant in physics, engineering, and mathematics: {prompt}" inputs = tokenizer(full_prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=max_length) response = tokenizer.decode(outputs[0], skip_special_tokens=True) st.write("Response:", response)