#Imports-------------------------------------------------------------
import gradio as gr
import os
import subprocess
import torch
from transformers import pipeline
#User defined functions (UDF)
from functions.charts import spider_chart
from functions.dictionaries import calculate_average, transform_dict
from functions.icon import generate_icon
from functions.timestamp import format_timestamp
from functions.youtube import get_youtube_video_id
#---------------------------------------------------------------------
MODEL_NAME = "openai/whisper-medium"
BATCH_SIZE = 8
device = 0 if torch.cuda.is_available() else "cpu"
#Transformers pipeline
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device
)
#Formating---------------------------------------------------------------------------------------------
title = "Whisper Demo: Transcribe Audio"
MODEL_NAME1 = "jpdiazpardo/whisper-tiny-metal"
description = ("Transcribe long-form audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME1}](https://huggingface.co/{MODEL_NAME1}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length. Check some of the 'cool' examples below")
linkedin = generate_icon("linkedin")
github = generate_icon("github")
article = ("
"
f"
{linkedin} Juan Pablo DÃaz Pardo "
f"{github} jpdiazpardo
")
title = "Scream: Fine-Tuned Whisper model for automatic gutural speech recognition 🤟🤟🤟"
#-------------------------------------------------------------------------------------------------------------------------------
#Define classifier for sentiment analysis
classifier = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", top_k=None)
#Functions-----------------------------------------------------------------------------------------------------------------------
def transcribe(*args):#file, return_timestamps, *kwargs):
'''inputs: file, return_timestamps'''
outputs = pipe(args[3], batch_size=BATCH_SIZE, generate_kwargs={"task": 'transcribe'}, return_timestamps=True)
text = outputs["text"]
timestamps = outputs["chunks"]
#If return timestamps is True, return html text with timestamps format
if args[4]==True:
spider_text = [f"{chunk['text']}" for chunk in timestamps] #Text for spider chart without timestamps
timestamps = [f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" for chunk in timestamps]
else:
timestamps = [f"{chunk['text']}" for chunk in timestamps]
spider_text = timestamps
text = "
".join(str(feature) for feature in timestamps)
text = f"
Transcription {text}
"
spider_text = "\n".join(str(feature) for feature in spider_text)
trans_dict=[transform_dict(classifier.predict(t)[0]) for t in spider_text.split("\n")]
av_dict = calculate_average(trans_dict)
fig = spider_chart(av_dict)
return args[3], text, fig, av_dict
embed_html = '
VIDEO '
def download(link):
subprocess.run(['python3', 'youtubetowav.py', link])
return thumbnail.update(value=embed_html.replace("YOUTUBE_ID",get_youtube_video_id(link)), visible=True)
def hide_sa(value):
if value == True:
return sa_plot.update(visible=True), sa_frequency.update(visible=True)
else:
return sa_plot.update(visible=False), sa_frequency.update(visible=False)
#----------------------------------------------------------------------------------------------------------------------------------------------
#Components------------------------------------------------------------------------------------------------------------------------------------
#Input components
yt_link = gr.Textbox(value=None,label="YouTube link", info = "Optional: Copy and paste YouTube URL")
audio_input = gr.Audio(source="upload", type="filepath", label="Upload audio file for transcription")
download_button = gr.Button("Download")
thumbnail = gr.HTML(value=embed_html, visible=False)
sa_checkbox = gr.Checkbox(value=True, label="Sentiment analysis")
inputs = [yt_link, #0
download_button, #1
thumbnail, #2
audio_input, #3
gr.Checkbox(value=True, label="Return timestamps"), #4
sa_checkbox] #5
#Ouput components
audio_out = gr.Audio(label="Processed Audio", type="filepath", info = "Vocals only")
sa_plot = gr.Plot(label="Sentiment Analysis")
sa_frequency = gr.Label(label="Frequency")
outputs = [audio_out, gr.outputs.HTML("text"), sa_plot, sa_frequency]
#----------------------------------------------------------------------------------------------------------------------------------------------------
#Launch demo-----------------------------------------------------------------------------------------------------------------------------------------
with gr.Blocks() as demo:
download_button.click(download, inputs=[yt_link], outputs=[thumbnail])
sa_checkbox.change(hide_sa, inputs=[sa_checkbox], outputs=[sa_plot, sa_frequency])
with gr.Column():
gr.Interface(title = title, fn=transcribe, inputs = inputs, outputs = outputs,
description=description, cache_examples=True, allow_flagging="never", article = article,
examples='examples'
)
demo.queue(concurrency_count=3)
demo.launch(debug = True)
#----------------------------------------------------------------------------------------------------------------------------------------------------