import gradio as gr
import torch
from icon import generate_icon
from transformers import pipeline
from timestamp import format_timestamp
MODEL_NAME = "openai/whisper-medium"
BATCH_SIZE = 8
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
def transcribe(file, task, return_timestamps):
outputs = pipe(file, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
text = outputs["text"]
timestamps = outputs["chunks"]
if return_timestamps==True:
timestamps = [f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" for chunk in timestamps]
else:
timestamps = [f"{chunk['text']}" for chunk in timestamps]
text = "
".join(str(feature) for feature in timestamps)
text = f"
Transcription
{text}
"
return file, text
inputs = [gr.Audio(source="upload", label="Audio file", type="filepath"),
gr.Radio(["transcribe"], label="Task", value="transcribe"),
gr.Checkbox(value=True, label="Return timestamps")]
outputs = [gr.Audio(label="Processed Audio", type="filepath"),
gr.outputs.HTML("text")]
title = "Whisper Demo: Transcribe Audio"
MODEL_NAME1 = "jpdiazpardo/whisper-tiny-metal"
description = ("Transcribe long-form audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME1}](https://huggingface.co/{MODEL_NAME1}) and 🤗 Transformers to transcribe audio files"
" of arbitrary length. Check some of the 'cool' examples below")
examples = [["When a Demon Defiles a Witch.wav","transcribe",True]]
linkedin = generate_icon("linkedin")
github = generate_icon("github")
article = (""
f"
{linkedin} Juan Pablo DÃaz Pardo
"
f"{github} jpdiazpardo
"
)
title = "Scream: Fine-Tuned Whisper model for automatic gutural speech recognition 🤟🤟🤟"
demo = gr.Interface(title = title, fn=transcribe, inputs = inputs, outputs = outputs, description=description, cache_examples=True,
allow_flagging="never", article = article , examples=examples)
demo.queue(concurrency_count=3)
demo.launch(debug = True)