# Inference Inference support command line, HTTP API and web UI. !!! note Overall, reasoning consists of several parts: 1. Encode a given ~10 seconds of voice using VQGAN. 2. Input the encoded semantic tokens and the corresponding text into the language model as an example. 3. Given a new piece of text, let the model generate the corresponding semantic tokens. 4. Input the generated semantic tokens into VITS / VQGAN to decode and generate the corresponding voice. ## Command Line Inference Download the required `vqgan` and `llama` models from our Hugging Face repository. ```bash huggingface-cli download fishaudio/fish-speech-1.4 --local-dir checkpoints/fish-speech-1.4 ``` ### 1. Generate prompt from voice: !!! note If you plan to let the model randomly choose a voice timbre, you can skip this step. ```bash python tools/vqgan/inference.py \ -i "paimon.wav" \ --checkpoint-path "checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth" ``` You should get a `fake.npy` file. ### 2. Generate semantic tokens from text: ```bash python tools/llama/generate.py \ --text "The text you want to convert" \ --prompt-text "Your reference text" \ --prompt-tokens "fake.npy" \ --checkpoint-path "checkpoints/fish-speech-1.4" \ --num-samples 2 \ --compile ``` This command will create a `codes_N` file in the working directory, where N is an integer starting from 0. !!! note You may want to use `--compile` to fuse CUDA kernels for faster inference (~30 tokens/second -> ~500 tokens/second). Correspondingly, if you do not plan to use acceleration, you can comment out the `--compile` parameter. !!! info For GPUs that do not support bf16, you may need to use the `--half` parameter. ### 3. Generate vocals from semantic tokens: #### VQGAN Decoder ```bash python tools/vqgan/inference.py \ -i "codes_0.npy" \ --checkpoint-path "checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth" ``` ## HTTP API Inference We provide a HTTP API for inference. You can use the following command to start the server: ```bash python -m tools.api \ --listen 0.0.0.0:8080 \ --llama-checkpoint-path "checkpoints/fish-speech-1.4" \ --decoder-checkpoint-path "checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth" \ --decoder-config-name firefly_gan_vq ``` If you want to speed up inference, you can add the --compile parameter. After that, you can view and test the API at http://127.0.0.1:8080/. Below is an example of sending a request using `tools/post_api.py`. ```bash python -m tools.post_api \ --text "Text to be input" \ --reference_audio "Path to reference audio" \ --reference_text "Text content of the reference audio" \ --streaming True ``` The above command indicates synthesizing the desired audio according to the reference audio information and returning it in a streaming manner. The following example demonstrates that you can use **multiple** reference audio paths and reference audio texts at once. Separate them with spaces in the command. ```bash python -m tools.post_api \ --text "Text to input" \ --reference_audio "reference audio path1" "reference audio path2" \ --reference_text "reference audio text1" "reference audio text2"\ --streaming False \ --output "generated" \ --format "mp3" ``` The above command synthesizes the desired `MP3` format audio based on the information from multiple reference audios and saves it as `generated.mp3` in the current directory. ## GUI Inference [Download client](https://github.com/AnyaCoder/fish-speech-gui/releases/tag/v0.1.0) ## WebUI Inference You can start the WebUI using the following command: ```bash python -m tools.webui \ --llama-checkpoint-path "checkpoints/fish-speech-1.4" \ --decoder-checkpoint-path "checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth" \ --decoder-config-name firefly_gan_vq ``` !!! note You can use Gradio environment variables, such as `GRADIO_SHARE`, `GRADIO_SERVER_PORT`, `GRADIO_SERVER_NAME` to configure WebUI. Enjoy!