import gradio as gr from model_utils import load_models, extract_information, predict_tags, extract_4w_qa, generate_why_or_how_question_and_answer bilstm_model, ner_tokenizer, id2label_ner = load_models() def extract_and_display_info(user_input): if user_input: ner_tags = predict_tags(user_input, bilstm_model, ner_tokenizer, id2label_ner) extracted_info = extract_4w_qa(user_input, ner_tags) qa_result = generate_why_or_how_question_and_answer(extracted_info, user_input) if qa_result: extracted_info["Generated Question"] = qa_result["question"] extracted_info["Answer"] = qa_result["answer"] output_text = "Extracted Information:\n" for question, answer in extracted_info.items(): output_text += f"- **{question}:** {answer}\n" return output_text else: return "Please enter some text." iface = gr.Interface( fn=extract_and_display_info, inputs="text", outputs="text", title="Information Extraction Chatbot" ) iface.launch()