Spaces:
Runtime error
Runtime error
Upload 6 files
Browse files- bedroom.jpg +0 -0
- boomerang.py +252 -0
- cat.png +0 -0
- einstein.jpg +0 -0
- oprah.jpeg +0 -0
- original.png +0 -0
bedroom.jpg
ADDED
boomerang.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from torch import autocast
|
5 |
+
from torchvision import transforms as T
|
6 |
+
from types import MethodType
|
7 |
+
from typing import List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
from diffusers import StableDiffusionPipeline
|
10 |
+
from diffusers.models.unet_2d_condition import UNet2DConditionOutput
|
11 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
12 |
+
|
13 |
+
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16, use_auth_token=True)
|
14 |
+
#pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=True)
|
15 |
+
|
16 |
+
pipe = pipe.to('cuda')
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
# Overriding the U-Net forward pass
|
22 |
+
def forward(
|
23 |
+
self,
|
24 |
+
sample: torch.FloatTensor,
|
25 |
+
timestep: Union[torch.Tensor, float, int],
|
26 |
+
encoder_hidden_states: torch.Tensor,
|
27 |
+
return_dict: bool = True,
|
28 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
29 |
+
"""r
|
30 |
+
Args:
|
31 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
32 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
33 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, channel, height, width) encoder hidden states
|
34 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
35 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
39 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
40 |
+
returning a tuple, the first element is the sample tensor.
|
41 |
+
"""
|
42 |
+
# 0. center input if necessary
|
43 |
+
if self.config.center_input_sample:
|
44 |
+
sample = 2 * sample - 1.0
|
45 |
+
|
46 |
+
# 1. time
|
47 |
+
timesteps = timestep
|
48 |
+
if not torch.is_tensor(timesteps):
|
49 |
+
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
|
50 |
+
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
51 |
+
timesteps = timesteps.to(dtype=torch.float32)
|
52 |
+
timesteps = timesteps[None].to(device=sample.device)
|
53 |
+
|
54 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
55 |
+
timesteps = timesteps.expand(sample.shape[0])
|
56 |
+
|
57 |
+
t_emb = self.time_proj(timesteps)
|
58 |
+
#emb = self.time_embedding(t_emb)
|
59 |
+
emb = self.time_embedding(t_emb.to(sample.dtype))
|
60 |
+
|
61 |
+
# 2. pre-process
|
62 |
+
sample = self.conv_in(sample)
|
63 |
+
|
64 |
+
# 3. down
|
65 |
+
down_block_res_samples = (sample,)
|
66 |
+
for downsample_block in self.down_blocks:
|
67 |
+
if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None:
|
68 |
+
sample, res_samples = downsample_block(
|
69 |
+
hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states
|
70 |
+
)
|
71 |
+
else:
|
72 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
73 |
+
|
74 |
+
down_block_res_samples += res_samples
|
75 |
+
|
76 |
+
# 4. mid
|
77 |
+
sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states)
|
78 |
+
|
79 |
+
# 5. up
|
80 |
+
for upsample_block in self.up_blocks:
|
81 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
82 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
83 |
+
|
84 |
+
if hasattr(upsample_block, "attentions") and upsample_block.attentions is not None:
|
85 |
+
sample = upsample_block(
|
86 |
+
hidden_states=sample,
|
87 |
+
temb=emb,
|
88 |
+
res_hidden_states_tuple=res_samples,
|
89 |
+
encoder_hidden_states=encoder_hidden_states,
|
90 |
+
)
|
91 |
+
else:
|
92 |
+
sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples)
|
93 |
+
|
94 |
+
# 6. post-process
|
95 |
+
# make sure hidden states is in float32
|
96 |
+
# when running in half-precision
|
97 |
+
#sample = self.conv_norm_out(sample.float()).type(sample.dtype)
|
98 |
+
sample = self.conv_norm_out(sample)
|
99 |
+
sample = self.conv_act(sample)
|
100 |
+
sample = self.conv_out(sample)
|
101 |
+
|
102 |
+
if not return_dict:
|
103 |
+
return (sample,)
|
104 |
+
|
105 |
+
return UNet2DConditionOutput(sample=sample)
|
106 |
+
|
107 |
+
|
108 |
+
def safety_forward(self, clip_input, images):
|
109 |
+
return images, False
|
110 |
+
|
111 |
+
|
112 |
+
# Overriding the Stable Diffusion call method
|
113 |
+
@torch.no_grad()
|
114 |
+
def call(
|
115 |
+
self,
|
116 |
+
prompt: Union[str, List[str]],
|
117 |
+
height: Optional[int] = 512,
|
118 |
+
width: Optional[int] = 512,
|
119 |
+
num_inference_steps: Optional[int] = 50,
|
120 |
+
guidance_scale: Optional[float] = 7.5,
|
121 |
+
eta: Optional[float] = 0.0,
|
122 |
+
generator: Optional[torch.Generator] = None,
|
123 |
+
latents: Optional[torch.FloatTensor] = None,
|
124 |
+
output_type: Optional[str] = "pil",
|
125 |
+
return_dict: bool = True,
|
126 |
+
percent_noise: float = 0.7,
|
127 |
+
**kwargs,
|
128 |
+
):
|
129 |
+
if isinstance(prompt, str):
|
130 |
+
batch_size = 1
|
131 |
+
elif isinstance(prompt, list):
|
132 |
+
batch_size = len(prompt)
|
133 |
+
else:
|
134 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
135 |
+
|
136 |
+
if height % 8 != 0 or width % 8 != 0:
|
137 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
138 |
+
|
139 |
+
# get prompt text embeddings
|
140 |
+
text_input = self.tokenizer(
|
141 |
+
prompt,
|
142 |
+
padding="max_length",
|
143 |
+
max_length=self.tokenizer.model_max_length,
|
144 |
+
truncation=True,
|
145 |
+
return_tensors="pt",
|
146 |
+
)
|
147 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
148 |
+
|
149 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
150 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
151 |
+
# corresponds to doing no classifier free guidance.
|
152 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
153 |
+
# get unconditional embeddings for classifier free guidance
|
154 |
+
if do_classifier_free_guidance:
|
155 |
+
max_length = text_input.input_ids.shape[-1]
|
156 |
+
uncond_input = self.tokenizer(
|
157 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
158 |
+
)
|
159 |
+
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
160 |
+
|
161 |
+
# For classifier free guidance, we need to do two forward passes.
|
162 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
163 |
+
# to avoid doing two forward passes
|
164 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
165 |
+
|
166 |
+
# get the initial random noise unless the user supplied it
|
167 |
+
|
168 |
+
# Unlike in other pipelines, latents need to be generated in the target device
|
169 |
+
# for 1-to-1 results reproducibility with the CompVis implementation.
|
170 |
+
# However this currently doesn't work in `mps`.
|
171 |
+
latents_device = "cpu" if self.device.type == "mps" else self.device
|
172 |
+
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
|
173 |
+
if latents is None:
|
174 |
+
latents = torch.randn(
|
175 |
+
latents_shape,
|
176 |
+
generator=generator,
|
177 |
+
device=latents_device,
|
178 |
+
)
|
179 |
+
else:
|
180 |
+
if latents.shape != latents_shape:
|
181 |
+
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
|
182 |
+
latents = latents.to(self.device)
|
183 |
+
|
184 |
+
# set timesteps
|
185 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
186 |
+
|
187 |
+
# if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
|
188 |
+
#if isinstance(self.scheduler, LMSDiscreteScheduler):
|
189 |
+
# latents = latents * self.scheduler.sigmas[0]
|
190 |
+
|
191 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
192 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
193 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
194 |
+
# and should be between [0, 1]
|
195 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
196 |
+
extra_step_kwargs = {}
|
197 |
+
if accepts_eta:
|
198 |
+
extra_step_kwargs["eta"] = eta
|
199 |
+
|
200 |
+
|
201 |
+
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
|
202 |
+
|
203 |
+
if t - 1 > 1000 * percent_noise:
|
204 |
+
continue
|
205 |
+
|
206 |
+
#print(t)
|
207 |
+
|
208 |
+
# expand the latents if we are doing classifier free guidance
|
209 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
210 |
+
#if isinstance(self.scheduler, LMSDiscreteScheduler):
|
211 |
+
# sigma = self.scheduler.sigmas[i]
|
212 |
+
# # the model input needs to be scaled to match the continuous ODE formulation in K-LMS
|
213 |
+
# latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
|
214 |
+
|
215 |
+
# predict the noise residual
|
216 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
217 |
+
|
218 |
+
# perform guidance
|
219 |
+
if do_classifier_free_guidance:
|
220 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
221 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
222 |
+
|
223 |
+
# compute the previous noisy sample x_t -> x_t-1
|
224 |
+
#if isinstance(self.scheduler, LMSDiscreteScheduler):
|
225 |
+
# latents = self.scheduler.step(noise_pred, i, latents, **extra_step_kwargs).prev_sample
|
226 |
+
#else:
|
227 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
228 |
+
|
229 |
+
|
230 |
+
# scale and decode the image latents with vae
|
231 |
+
latents = 1 / 0.18215 * latents
|
232 |
+
image = self.vae.decode(latents).sample
|
233 |
+
|
234 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
235 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
236 |
+
|
237 |
+
# run safety checker
|
238 |
+
safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
|
239 |
+
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values)
|
240 |
+
|
241 |
+
if output_type == "pil":
|
242 |
+
image = self.numpy_to_pil(image)
|
243 |
+
|
244 |
+
if not return_dict:
|
245 |
+
return (image, has_nsfw_concept)
|
246 |
+
|
247 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
248 |
+
|
249 |
+
|
250 |
+
pipe.unet.forward = MethodType(forward, pipe.unet)
|
251 |
+
pipe.safety_checker.forward = MethodType(safety_forward, pipe.safety_checker)
|
252 |
+
type(pipe).__call__ = call
|
cat.png
ADDED
einstein.jpg
ADDED
oprah.jpeg
ADDED
original.png
ADDED