Spaces:
Runtime error
Runtime error
import inspect | |
from PIL import Image | |
import os | |
import torch | |
from torch import autocast | |
from torchvision import transforms as T | |
from types import MethodType | |
from typing import List, Optional, Tuple, Union | |
from diffusers import StableDiffusionPipeline | |
from diffusers.models.unet_2d_condition import UNet2DConditionOutput | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16, use_auth_token=os.environ.get('HF_TOKEN_SD')) | |
#pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=True) | |
#pipe = pipe.to('cuda') | |
# Overriding the U-Net forward pass | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
encoder_hidden_states: torch.Tensor, | |
return_dict: bool = True, | |
) -> Union[UNet2DConditionOutput, Tuple]: | |
"""r | |
Args: | |
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor | |
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps | |
encoder_hidden_states (`torch.FloatTensor`): (batch, channel, height, width) encoder hidden states | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
returning a tuple, the first element is the sample tensor. | |
""" | |
# 0. center input if necessary | |
if self.config.center_input_sample: | |
sample = 2 * sample - 1.0 | |
# 1. time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device) | |
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: | |
timesteps = timesteps.to(dtype=torch.float32) | |
timesteps = timesteps[None].to(device=sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps.expand(sample.shape[0]) | |
t_emb = self.time_proj(timesteps) | |
#emb = self.time_embedding(t_emb) | |
emb = self.time_embedding(t_emb.to(sample.dtype)) | |
# 2. pre-process | |
sample = self.conv_in(sample) | |
# 3. down | |
down_block_res_samples = (sample,) | |
for downsample_block in self.down_blocks: | |
if hasattr(downsample_block, "attentions") and downsample_block.attentions is not None: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states | |
) | |
else: | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
down_block_res_samples += res_samples | |
# 4. mid | |
sample = self.mid_block(sample, emb, encoder_hidden_states=encoder_hidden_states) | |
# 5. up | |
for upsample_block in self.up_blocks: | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
if hasattr(upsample_block, "attentions") and upsample_block.attentions is not None: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
) | |
else: | |
sample = upsample_block(hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples) | |
# 6. post-process | |
# make sure hidden states is in float32 | |
# when running in half-precision | |
#sample = self.conv_norm_out(sample.float()).type(sample.dtype) | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
if not return_dict: | |
return (sample,) | |
return UNet2DConditionOutput(sample=sample) | |
def safety_forward(self, clip_input, images): | |
return images, False | |
# Overriding the Stable Diffusion call method | |
def call( | |
self, | |
prompt: Union[str, List[str]], | |
height: Optional[int] = 512, | |
width: Optional[int] = 512, | |
num_inference_steps: Optional[int] = 50, | |
guidance_scale: Optional[float] = 7.5, | |
eta: Optional[float] = 0.0, | |
generator: Optional[torch.Generator] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
percent_noise: float = 0.7, | |
**kwargs, | |
): | |
if isinstance(prompt, str): | |
batch_size = 1 | |
elif isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
if height % 8 != 0 or width % 8 != 0: | |
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
# get prompt text embeddings | |
text_input = self.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=self.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0] | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# get unconditional embeddings for classifier free guidance | |
if do_classifier_free_guidance: | |
max_length = text_input.input_ids.shape[-1] | |
uncond_input = self.tokenizer( | |
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" | |
) | |
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0] | |
# For classifier free guidance, we need to do two forward passes. | |
# Here we concatenate the unconditional and text embeddings into a single batch | |
# to avoid doing two forward passes | |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) | |
# get the initial random noise unless the user supplied it | |
# Unlike in other pipelines, latents need to be generated in the target device | |
# for 1-to-1 results reproducibility with the CompVis implementation. | |
# However this currently doesn't work in `mps`. | |
latents_device = "cpu" if self.device.type == "mps" else self.device | |
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8) | |
if latents is None: | |
latents = torch.randn( | |
latents_shape, | |
generator=generator, | |
device=latents_device, | |
) | |
else: | |
if latents.shape != latents_shape: | |
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") | |
latents = latents.to(self.device) | |
# set timesteps | |
self.scheduler.set_timesteps(num_inference_steps) | |
# if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas | |
#if isinstance(self.scheduler, LMSDiscreteScheduler): | |
# latents = latents * self.scheduler.sigmas[0] | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): | |
if t - 1 > 1000 * percent_noise: | |
continue | |
#print(t) | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
#if isinstance(self.scheduler, LMSDiscreteScheduler): | |
# sigma = self.scheduler.sigmas[i] | |
# # the model input needs to be scaled to match the continuous ODE formulation in K-LMS | |
# latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5) | |
# predict the noise residual | |
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
#if isinstance(self.scheduler, LMSDiscreteScheduler): | |
# latents = self.scheduler.step(noise_pred, i, latents, **extra_step_kwargs).prev_sample | |
#else: | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
# scale and decode the image latents with vae | |
latents = 1 / 0.18215 * latents | |
image = self.vae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
# run safety checker | |
safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device) | |
image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values) | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
pipe.unet.forward = MethodType(forward, pipe.unet) | |
pipe.safety_checker.forward = MethodType(safety_forward, pipe.safety_checker) | |
type(pipe).__call__ = call |