from fastai.vision.all import * import timm import gradio as gr learn = load_learner('bean.pkl') categories = ('Black Beans', 'Chickpea', 'Coffee Bean', 'Kidney Beans', 'Ligma Beans', 'Soybean') # Gradio requires a dictionary of all the categories and the probabilities of each category. def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.components.Image(shape=(192, 192)) label = gr.outputs.Label() examples = ['coffee.jpg', 'kidney.jpg', 'soybean.jpg', 'fresh coffee bean.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False) # When uploading to Huggingspaces we dont need to specify the WindowsPath. That was just for Jupyter, some weird errors with my python software.