import time from about import show_about_ask2democracy import streamlit as st from pinecode_quieries import PinecodeProposalQueries from config import Config from samples import * queries = PinecodeProposalQueries (index_name= Config.index_name, api_key = Config.es_password, environment = Config.pinecone_environment, embedding_dim = Config.embedding_dim, reader_name_or_path = Config.reader_model_name_or_path, use_gpu = Config.use_gpu, OPENAI_key= None) def search(question, retriever_top_k, reader_top_k, selected_index=None): filters = {"source_title": selected_index} query_result = queries.search_by_query(query = question, retriever_top_k = retriever_top_k, reader_top_k = reader_top_k, filters = filters) result = [] for i in range(0, len(query_result)): item = query_result[i] result.append([[i+1], item.answer.replace("\n",""), item.context[:250], item.meta['title'], item.meta['source_title'], int(item.meta['page']), item.meta['source_url']]) return result def search_and_show_results(query:str, retriever_top_k = 5, reader_top_k =3, selected_index=None): stt = time.time() results = search(query, retriever_top_k=retriever_top_k, reader_top_k=reader_top_k, selected_index=selected_index) ent = time.time() elapsed_time = round(ent - stt, 2) st.write(f"**Resultados encontrados para la pregunta** \"{query}\" ({elapsed_time} sec.):") for i, answer in enumerate(results): st.subheader(f"{answer[1]}") doc = answer[2][:250] + "..." st.markdown(f"{doc}[Lee más aquí]({answer[6]})", unsafe_allow_html=True) st.caption(f"Fuente: {answer[4]} - Artículo: {answer[3]} - Página: {answer[5]}") def search_and_generate_answer(question, retriever_top_k, generator_top_k, openai_api_key, openai_model_name= "text-davinci-003", temperature = .5, max_tokens = 30, selected_index = None): filters = {"source_title": selected_index} query_result = queries.genenerate_answer_OpenAI(query = question, retriever_top_k = retriever_top_k, generator_top_k = generator_top_k, filters = filters, OPENAI_key = openai_api_key, openai_model_name= openai_model_name,temperature = temperature, max_tokens = max_tokens) result = [] for i in range(0, len(query_result)): item = query_result[i] source_title = item.meta['doc_metas'][0]['source_title'] source_url = item.meta['doc_metas'][0]['source_url'] chapter_titles = [source['title'] for source in item.meta['doc_metas']] result.append([[i+1], item.answer.replace("\n",""), source_title, source_url, str(chapter_titles)]) return result def search_and_show_generative_results(query:str, retriever_top_k = 5, generator_top_k =1 , openai_api_key = None, openai_model_name = "text-davinci-003", temperature = .5, max_tokens = 30, selected_index = None): # set start time stt = time.time() results = search_and_generate_answer(query, retriever_top_k = retriever_top_k, generator_top_k= generator_top_k, openai_api_key = openai_api_key, openai_model_name= openai_model_name, temperature = temperature, max_tokens = max_tokens, selected_index = selected_index) ent = time.time() elapsed_time = round(ent - stt, 2) st.write(f"**Respuesta generada para la pregunta** \"{query}\" ({elapsed_time} sec.):") if results != None: for i, answer in enumerate(results): # answer starts with header st.subheader(f"{answer[1]}") st.caption(f"Fuentes: {answer[2]} - {answer[4]}") st.markdown(f"[Lee más aquí]({answer[3]})") indexes = [{"title": "Propuestas de reforma 2023", "name": "Reforma de la salud 13 Febrero 2023", "samples": samples_reforma_salud}, {"title": "Hallazgos de la comisión de la verdad", "name": "Hallazgos y recomendaciones - 28 de Junio 2022", "samples": samples_hallazgos_paz}] index_titles = [item["title"] for item in indexes] def get_selected_index_by_title(title): for item in indexes: if item["title"] == title: return item["name"] return None def get_samples_for_index(title): for item in indexes: if item["title"] == title: return item["samples"] return None def main(): st.markdown("""