File size: 2,175 Bytes
e0a78f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
12

FUNDAMENTALS

Contents
2.1

2.2

2.3

2.4

2.1

Statistical Learning - basics . . . . . . . . . . . .
2.1.1 Neural Networks . . . . . . . . . . . . .
2.1.2 Probabilistic Evaluation . . . . . . . . .
2.1.3 Architectures . . . . . . . . . . . . . . .
Reliability and Robustness . . . . . . . . . . . .
2.2.1 Generalization and Adaptation . . . . .
2.2.2 Confidence Estimation . . . . . . . . . .
2.2.3 Evaluation Metrics . . . . . . . . . . . .
2.2.4 Calibration . . . . . . . . . . . . . . . .
2.2.5 Predictive Uncertainty Quantification . .
2.2.6 Failure Prediction . . . . . . . . . . . . .
Document Understanding . . . . . . . . . . . . .
2.3.1 Task Definitions . . . . . . . . . . . . . .
2.3.2 Datasets . . . . . . . . . . . . . . . . . .
2.3.3 Models . . . . . . . . . . . . . . . . . . .
2.3.4 Challenges in Document Understanding
Intelligent Automation . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

12
14
15
17
18
19
20
21
25
27
29
30
31
33
34
35
38

Statistical Learning

Two popular definitions of Machine Learning (ML) are given below.
Machine Learning is the field of study that gives computers the ability
to learn without being explicitly programmed. [406]
A computer program is said to learn from experience E with respect to
some class of tasks T, and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E. [317]
Following these, different types of learning problems [472] can be discerned, of
which the most common (and the one used throughout our works) is supervised
learning. It defines experience E as a set of input-output pairs for which the
task T is to learn a mapping f from inputs X ∈ X to outputs Y ∈ Y, and the
performance measure P is the risk or expected loss (Equation (2.1)), given a
(0-1) loss function ` : Y × Y → R+ .
R(f ) = E(X,Y )∼P [`(Y, f (X))]

(2.1)

The mapping f (·; θ) : X → Y is typically parameterized by a set of parameters
θ (omitted whenever it is fixed) and a hypothesis class F, which is a set of