import streamlit as st import torch from transformers import BertConfig, BertForSequenceClassification, BertTokenizer import numpy as np import requests from io import BytesIO # Load the model and tokenizer def load_model(): tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=7) model_state_dict = torch.load('sentiment7_model_acc8878.pth', map_location=torch.device('cpu')) # cpu 사용 model.load_state_dict(model_state_dict) model.eval() return model, tokenizer model, tokenizer = load_model() # Define the inference function def inference(input_doc): inputs = tokenizer(input_doc, return_tensors='pt') outputs = model(**inputs) probs = torch.softmax(outputs.logits, dim=1).squeeze().tolist() class_idx = {'공포': 0, '놀람': 1, '분노': 2, '슬픔': 3, '중립': 4, '행복': 5, '혐오': 6} return {class_name: prob for class_name, prob in zip(class_idx, probs)} # Set up the Streamlit interface st.title('Sentiment Analysis with BERT') user_input = st.text_area("Enter text here:") if st.button('Analyze'): result = inference(user_input) st.write(result)