import os os.system('pip install gradio==2.3.0a0') os.system('pip freeze') import sys sys.path.append('.') import gradio as gr os.system('pip install -U torchtext==0.8.0') #os.system('python setup.py install --install-dir .') from scipy.io import wavfile os.system('chmod a+x ./separate_scripts/*.sh') os.system('chmod a+x ./scripts/*.sh') os.system('chmod a+x ./scripts/*/*.sh') os.system('./separate_scripts/download_checkpoints.sh') def inference(audio): input_path = audio.name print(f"The audio file name is: {audio.name}") output_path = os.path.splitext(input_path)[0] + ".wav" os.system(f"ffmpeg -y -loglevel panic -i {input_path} -acodec pcm_s16le -ar 44100 {output_path}") # read the file and get the sample rate and data # rate, data = wavfile.read(output_path) try: # try to read the file and get the sample rate and data rate, data = wavfile.read(output_path) except: # if an exception occurs, read the original file instead rate, data = wavfile.read(input_path) # save the result wavfile.write('foo_left.wav', rate, data) os.system("""python bytesep/inference.py --config_yaml=./scripts/4_train/musdb18/configs/vocals-accompaniment,resunet_subbandtime.yaml --checkpoint_path=./downloaded_checkpoints/resunet143_subbtandtime_vocals_8.8dB_350k_steps.pth --audio_path=foo_left.wav --output_path=sep_vocals.mp3""") #os.system('./separate_scripts/separate_vocals.sh ' + audio.name + ' "sep_vocals.mp3"') os.system("""python bytesep/inference.py --config_yaml=./scripts/4_train/musdb18/configs/accompaniment-vocals,resunet_subbandtime.yaml --checkpoint_path=./downloaded_checkpoints/resunet143_subbtandtime_accompaniment_16.4dB_350k_steps.pth --audio_path=foo_left.wav --output_path=sep_accompaniment.mp3""") #os.system('./separate_scripts/separate_accompaniment.sh ' + audio.name + ' "sep_accompaniment.mp3"') #os.system('python separate_scripts/separate.py --audio_path=' +audio.name+' --source_type="accompaniment"') #os.system('python separate_scripts/separate.py --audio_path=' +audio.name+' --source_type="vocals"') return 'sep_vocals.mp3', 'sep_accompaniment.mp3' title = "Music Source Separation" description = "Gradio demo for Music Source Separation. To use it, simply add your audio, or click one of the examples to load them. Currently supports .wav files. Read more at the links below." article = "

Decoupling Magnitude and Phase Estimation with Deep ResUNet for Music Source Separation | Github Repo

" examples = [['example.wav']] gr.Interface( inference, gr.inputs.Audio(type="file", label="Input"), [gr.outputs.Audio(type="file", label="Vocals"),gr.outputs.Audio(type="file", label="Accompaniment")], title=title, description=description, article=article, enable_queue=True, examples=examples ).launch(debug=True)