from typing import Any, List, Mapping, Optional from langchain_core.callbacks.manager import CallbackManagerForLLMRun from langchain_core.language_models.llms import LLM from typing import Literal import requests from langchain.prompts import PromptTemplate, ChatPromptTemplate from operator import itemgetter from langchain.memory import ChatMessageHistory, ConversationBufferMemory from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_community.chat_models import ChatOpenAI from langchain_core.runnables import RunnableLambda, RunnablePassthrough from langchain_core.messages import AIMessage, HumanMessage from langchain_community.document_loaders import DirectoryLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.document_loaders import PyMuPDFLoader import os from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS def create_vectorstore(): loader = os.getenv('knowledge_base') splitter = RecursiveCharacterTextSplitter(chunk_size=512, chunk_overlap=20) docs = splitter.create_documents([loader]) emb_model = HuggingFaceEmbeddings(model_name='sentence-transformers/paraphrase-multilingual-mpnet-base-v2', encode_kwargs={'normalize_embeddings': True}) db = FAISS.from_documents(docs, emb_model) return db def custom_chain_with_history(llm, memory): prompt = PromptTemplate.from_template("""<|system|> You are a college student at Gunadarma University, majoring in Informatics / Computer Science. Your name is Jonathan Jordan, but people call you Jojo. You have expertise in Artificial Intelligence and Data Science. You are also good at Data Engineering with AirFlow and Apache Spark. You currently live in Tegal Alur, Kalideres, West Jakarta, Jakarta, Indonesia. You are 21 years old. Your birthday is Friday, 21 June 2002. Below are the detailed personal information about you: {context} Respond to the user with the following chat history between you and the user, if there is no relevant information that means you regard the information as a secret and you are not willing to share the information to the user: {chat_history} <|user|> {question} <|you|> """) def prompt_memory(memory): t = "" for x in memory.chat_memory.messages: # for x in memory.messages: t += f"<|you|>\n{x.content}\n\n" if type(x) is AIMessage else f"<|user|>\n{x.content}\n" return "" if len(t) == 0 else t def format_docs(docs): print(len(docs)) return "\n".join([f"{i+1}. {d.page_content}" for i,d in enumerate(docs)]) # prompt = ChatPromptTemplate.from_messages( # [ # ("system", "You are a helpful chatbot"), # MessagesPlaceholder(variable_name="history"), # ("human", "{input}"), # ] # ) # return {"chat_history":lambda x:, "context":create_vectorstore().as_retriever(search_type="similarity", search_kwargs={"k": 8}) | format_docs, "question": RunnablePassthrough()} | prompt | llm return {"chat_history":lambda x:prompt_memory(x['memory']), "context":itemgetter("question") | create_vectorstore().as_retriever(search_type="similarity", search_kwargs={"k": 8}) | format_docs, "question": lambda x:x['question']} | prompt | llm class CustomLLM(LLM): repo_id : str api_token : str model_type: Literal["text2text-generation", "text-generation"] max_new_tokens: int = None temperature: float = 0.001 timeout: float = None top_p: float = None top_k : int = None repetition_penalty : float = None stop : List[str] = [] @property def _llm_type(self) -> str: return "custom" def _call( self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any, ) -> str: headers = {"Authorization": f"Bearer {self.api_token}"} API_URL = f"https://api-inference.huggingface.co/models/{self.repo_id}" parameters_dict = { 'max_new_tokens': self.max_new_tokens, 'temperature': self.temperature, 'timeout': self.timeout, 'top_p': self.top_p, 'top_k': self.top_k, 'repetition_penalty': self.repetition_penalty, 'stop':self.stop } if self.model_type == 'text-generation': parameters_dict["return_full_text"]=False data = {"inputs": prompt, "parameters":parameters_dict, "options":{"wait_for_model":True}} data = requests.post(API_URL, headers=headers, json=data).json() return data[0]['generated_text'] @property def _identifying_params(self) -> Mapping[str, Any]: """Get the identifying parameters.""" return { 'repo_id': self.repo_id, 'model_type':self.model_type, 'stop_sequences':self.stop, 'max_new_tokens': self.max_new_tokens, 'temperature': self.temperature, 'timeout': self.timeout, 'top_p': self.top_p, 'top_k': self.top_k, 'repetition_penalty': self.repetition_penalty }