import random import re import gradio as gr import torch from transformers import AutoModelForCausalLM from transformers import AutoTokenizer from transformers import AutoModelForSeq2SeqLM from transformers import AutoProcessor from transformers import pipeline from transformers import set_seed device = "cuda" if torch.cuda.is_available() else "cpu" big_processor = AutoProcessor.from_pretrained("microsoft/git-base-coco") big_model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-coco") text_pipe = pipeline('text-generation', model='succinctly/text2image-prompt-generator') zh2en_model = AutoModelForSeq2SeqLM.from_pretrained('Helsinki-NLP/opus-mt-zh-en').eval() zh2en_tokenizer = AutoTokenizer.from_pretrained('Helsinki-NLP/opus-mt-zh-en') en2zh_model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-zh").eval() en2zh_tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-zh") def load_prompter(): prompter_model = AutoModelForCausalLM.from_pretrained("microsoft/Promptist") tokenizer = AutoTokenizer.from_pretrained("gpt2") tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" return prompter_model, tokenizer prompter_model, prompter_tokenizer = load_prompter() def generate_prompter(plain_text, max_new_tokens=75, num_return_sequences=3): input_ids = prompter_tokenizer(plain_text.strip() + " Rephrase:", return_tensors="pt").input_ids eos_id = prompter_tokenizer.eos_token_id outputs = prompter_model.generate( input_ids, do_sample=False, max_new_tokens=75, num_beams=6, num_return_sequences=num_return_sequences, eos_token_id=eos_id, pad_token_id=eos_id, length_penalty=-1 ) output_texts = prompter_tokenizer.batch_decode(outputs, skip_special_tokens=True) result = "" for output_text in output_texts: result.append(output_text.replace(plain_text + " Rephrase:", "").strip()) return "\n".join(result) def translate_zh2en(text): with torch.no_grad(): text = text.replace('\n', ',').replace('\r', ',') text = re.sub('^,+', ',', text) encoded = zh2en_tokenizer([text], return_tensors='pt') sequences = zh2en_model.generate(**encoded) return zh2en_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0] def translate_en2zh(text): with torch.no_grad(): encoded = en2zh_tokenizer([text], return_tensors="pt") sequences = en2zh_model.generate(**encoded) return en2zh_tokenizer.batch_decode(sequences, skip_special_tokens=True)[0] def text_generate(text): seed = random.randint(100, 1000000) set_seed(seed) text_in_english = translate_zh2en(text) result = "" for _ in range(6): sequences = text_pipe(text_in_english, max_length=random.randint(60, 90), num_return_sequences=8) list = [] for sequence in sequences: line = sequence['generated_text'].strip() if line != text_in_english and len(line) > (len(text_in_english) + 4) and line.endswith( (':', '-', '—')) is False: list.append(line) result = "\n".join(list) result = re.sub('[^ ]+\.[^ ]+', '', result) result = result.replace('<', '').replace('>', '').replace('"', '') if result != '': break return result, "\n".join(translate_en2zh(line) for line in result.split("\n") if len(line) > 0) def get_prompt_from_image(input_image): image = input_image.convert('RGB') pixel_values = big_processor(images=image, return_tensors="pt").to(device).pixel_values generated_ids = big_model.to(device).generate(pixel_values=pixel_values, max_length=50) generated_caption = big_processor.batch_decode(generated_ids, skip_special_tokens=True)[0] print(generated_caption) return generated_caption with gr.Blocks() as block: with gr.Column(): with gr.Tab('文生文'): with gr.Row(): input_text = gr.Textbox(lines=12, label='輸入文字', placeholder='在此输入文字...') with gr.Row(): txt_prompter_btn = gr.Button('執行') with gr.Tab('圖生文'): with gr.Row(): input_image = gr.Image(type='pil') with gr.Row(): pic_prompter_btn = gr.Button('執行') Textbox_1 = gr.Textbox(lines=6, label='輸出結果') Textbox_2 = gr.Textbox(lines=6, label='中文翻譯') txt_prompter_btn.click( fn=text_generate, inputs=input_text, outputs=[Textbox_1,Textbox_2] ) pic_prompter_btn.click( fn=get_prompt_from_image, inputs=input_image, outputs=Textbox_1 ) block.queue(max_size=64).launch(show_api=False, enable_queue=True, debug=True, share=False, server_name='0.0.0.0')