import gradio as gr import faiss import json import numpy as np from sentence_transformers import SentenceTransformer from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # Load Uber FAQ Data with open("uber_faqs.json", "r") as f: faq_data = json.load(f) faq_questions = [item["question"] for item in faq_data] faq_answers = {item["question"]: item["answer"] for item in faq_data} # Load Sentence Transformer Model for Embeddings embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2") faq_embeddings = embedding_model.encode(faq_questions, convert_to_numpy=True) # Create FAISS Index index = faiss.IndexFlatL2(faq_embeddings.shape[1]) index.add(faq_embeddings) def retrieve_uber_info(query): """Retrieve the most relevant Uber FAQ answer for the given query.""" query_embedding = embedding_model.encode([query], convert_to_numpy=True) D, I = index.search(query_embedding, k=1) # Get the closest match retrieved_question = faq_questions[I[0][0]] retrieved_answer = faq_answers[retrieved_question] return retrieved_answer client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond(message, history, system_message, max_tokens, temperature, top_p): """Generate a response using Zephyr 7B while integrating retrieved Uber knowledge.""" retrieved_answer = retrieve_uber_info(message) system_message += f"\n\nUber FAQ Context: {retrieved_answer}" messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are an Uber AI assistant. Only answer questions about Uber services, policies, pricing, and support. If a question is unrelated to Uber, say 'I can only help with Uber-related topics.'", label="System Instruction"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()